cho(m,n)=1. Tìm (A,B) với A=m+n . B= m^2+n^2
Giả sử: d=(m+n,m2+n2)
⇒ m+n ⋮ d và m^2+n^2 ⋮ d
⇒m^2+n^2+2mn ⋮ dvà m^2+n^2 ⋮ d
⇒2mn⋮ d và m+n ⋮ d
⇒2m(m+n) -2mn ⋮ d và 2n(m+n)−2mn ⋮ d
⇒2m^2 ⋮ d và 2n^2 ⋮ d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y là hàm số bậc nhất
\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)
b;c Tương tự.
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
\(a^2=(m^2+n^2)^2=m^4+2m^2.n^2+n^4\)
\(b^2=\left(m^2-n^2\right)^2=m^4-2m^2.n^2+n^4\)
\(c^2=(2mn)^2=4mn^2.n^2\)
Nx: \(a^2-b^2=c^2\)
\(\Rightarrow a^2=b^2+c^2\)
Theo định lí Py-ta-go đảo thì:
\(a;b;c\) là đọ dài 3 cạnh của 1 tam giác vuông.
a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0
hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)
Trường hợp 1: m=2
\(\Leftrightarrow4+2n+6n^2< >0\)
Đặt \(6n^2+2n+4=0\)
\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)
Do đó: \(4+2n+6n^2< >0\forall n\)
Trường hợp 2: m=3
\(\Leftrightarrow9+3n+6n^2< >0\)
Đặt \(6n^2+3n+9=0\)
\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)
Do đó: \(6n^2+3n+9\ne0\forall n\)
Vậy: m=2 hoặc m=3
Bài 1:
a: Để (d) là hàm số bậc nhất thì 2m-2<>0
hay m<>1
b: Để (d) là hàm số đồng biến thì 2m-2>0
hay m>1
c: Hàm số (d') đồng biến vì a=4>0
Bài 2:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
mình làm tới bước này rồi nhờ mọi người giải tiếp với với cách xét m,n cùng lẻ và m,n khác tính chẵn lẽ nhé 1