Tính:
A=sin^2anpha + cos^3anpha - tan anpha
Biết cot anpha =2/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
\(0< a< \frac{\pi}{2}\Rightarrow sina;cosa;tana>0\)
\(tana+\frac{1}{tana}=3\Leftrightarrow tan^2a-3tana+1=0\) \(\Rightarrow\left[{}\begin{matrix}tana=\frac{3-\sqrt{5}}{2}\\tana=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
- Với \(tana=\frac{3-\sqrt{5}}{2}\)
\(\Rightarrow cota=\frac{1}{tana}=\frac{3+\sqrt{5}}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{2}{\sqrt{18-6\sqrt{5}}}\)
\(sina=\sqrt{1-cos^2a}=\frac{2}{\sqrt{18+6\sqrt{5}}}\)
\(cos\left(\frac{3\pi}{2}-a\right)=cos\left(2\pi-\frac{\pi}{2}-a\right)=-sina=...\)
\(sin\left(2\pi+a\right)=sina=...\)
\(tan\left(\pi-a\right)=-tana=...\)
\(cot\left(\pi+a\right)=cota=...\)
TH2: \(tana=\frac{3+\sqrt{5}}{2}\)
Tương tự như trên
\(A=sin42^0-cos48^0=cos\left(90^0-42^0\right)-cos48^0=cos48^0-cos48^0=0\)
\(B=cot56^0-tan34^0=tan\left(90^0-56^0\right)-tan34^0=tan34^0-tan34^0=0\)
\(C=sin30^0-cot50^0-cos60^0+tan40^0\)
\(=cos\left(90^0-30^0\right)-tan\left(90^0-50^0\right)-cos60^0+tan40^0\)
\(=cos60^0-tan40^0-cos60^0+tan40^0=0\)
\(A=\sin42^0-\cos48^0=\sin42^0-\sin42^0=0\)
\(B=\cot56^0-\tan34^0=\tan34^0-\tan34^0=0\)
\(\sin\alpha=\frac{2}{5}\)
\(\Rightarrow\cos\alpha=\sqrt{1-\sin^2\alpha}\)
\(=\sqrt{1-\frac{4}{25}}\)
\(=\sqrt{\frac{21}{25}}=\)\(\frac{\sqrt{21}}{5}\)
\(\Rightarrow\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{5}:\frac{\sqrt{21}}{5}=\frac{2}{\sqrt{21}}\)và \(\cot\alpha=\frac{\sqrt{21}}{2}\)
2. Tương tự a)
\(\cos B=\sqrt{1-\sin^2B}\)
\(=\sqrt{1-\frac{1}{4}}\)
\(=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
\(\tan B,\cot B\)bạn tự tính nốt.
\(sin\alpha=0,4\Rightarrow sin^2\alpha=0,16\Rightarrow cos^2\alpha=1-sin^2\alpha=1-0,16=0,84\Rightarrow cos\alpha=\frac{\sqrt{21}}{5}\)
\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,4}{\frac{\sqrt{21}}{5}}=\frac{2\sqrt{21}}{21}\)
\(cot\alpha=1:sin\alpha=1:\frac{2\sqrt{21}}{21}=\frac{21}{2\sqrt{21}}\)
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
ko bt làm xuống lớp 8 đê
\(tana\cdot cota=1\)
\(tana\cdot\frac{2}{3}=1\)
\(tana=\frac{3}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+\left(\frac{3}{2}\right)^2=\frac{1}{cos^2a}\)
\(1+\frac{9}{4}=\frac{1}{cos^2a}\)
\(\frac{13}{4}=\frac{1}{cos^2a}\)
\(cos^2a=\frac{4}{13}\)
\(cosa=\frac{2\sqrt{13}}{13}\) ( cấp 2 nên chỉ lấy cos dương )
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{4}{13}=1\)
\(sin^2a=\frac{9}{13}\)
\(sin^2a+cos^3a-tana\)
\(=\frac{9}{13}+\frac{4\sqrt{13}}{13}-\frac{3}{2}\)
\(=\frac{18}{26}+\frac{8\sqrt{13}}{26}-\frac{39}{26}\)
\(=\frac{-21+8\sqrt{13}}{26}\)