K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy

29 tháng 11 2017

Bạn tra gu gồ được mà,hỏi làm gì cho mệt chớ,tìm được cách làm trên gu gồ là áp dụng vào bài thôi

29 tháng 11 2017

 noi A vs C ,BvsC

ap dung tinh chat duong trug binh cua tam giac

AM=EN

MN=FE

MNEF la hinh thoi

11 tháng 9 2021

Trên tia đối của PB lấy H sao cho BP = PH

ΔBPC và ΔHPD có:

BP = HP (cách vẽ)

\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)

PC = PD (gt)

Do đó, ΔBPC=ΔHPD(c.g.c)

=> BC = DH (2 cạnh t/ứng)

\(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD

ΔABH có: M là trung điểm của AB (gt)

P là trung điểm của BH (vì HP = BP)

Do đó MP là đường trung bình của ΔABH

\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH 

\(\Rightarrow2MP=AH\)

Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)

\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))

\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)

Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)

Do đó, \(AD+DH=AH\)

=> A,D,H thẳng hàng

Mà HD // BC (cmt) nên AD // BC

Tương tự: AB // CD

Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)

Do đó, ABCD là hình bình hành 

 

4 tháng 10 2021

dễ mà tính chất đường trung bình của tam giác suy ra diều phải chứng minh

4 tháng 10 2021

rồi xét các tam giác còn lại 

Nối A với D

5 tháng 10 2021

Gọi K là trung điểm BD

Xét tam giác ABD có:

Mlà trung điểm AD

K là trung điểm BD

=> MK là đường trung bình

\(\Rightarrow MK=\dfrac{1}{2}AB\left(1\right)\)

Xét tam giác BDC có:

K là trung điểm BD

N là trung điểm BC

=> NK là đường trung bình

\(\Rightarrow NK=\dfrac{1}{2}DC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow MK+NK=\dfrac{1}{2}\left(BC+DC\right)\)

Mà \(MK+NK\ge MN\)(bất đẳng thức trong tam giác KMN)

\(\Rightarrow MN\le\dfrac{AB+DC}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow MK+NK=MN\)

\(\Leftrightarrow\) K là trung điểm MN