xét đa thức P(x) có bậc 2017 thỏa mãn P(1)=2017,P(2)=2016,...,P(2017)=1,P(0)=1 tính gái trị của P(2018)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(Q\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow Q\left(2016\right)=Q\left(2017\right)=0\)
Vì P(x) là đa thức bậc ba có hệ số bậc cao nhất là 1 nên Q(x) cũng là đa thức bậc ba có hệ số bậc cao nhất là 1
\(\Rightarrow\)Q(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-a\right)\)(a là hằng số)
\(\Rightarrow P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-a\right)+\left(x+1\right)\)
\(\Rightarrow\hept{\begin{cases}-3P\left(2018\right)=-6\left(2018-a\right)-6057\\P\left(2019\right)=6\left(2019-a\right)+2020\end{cases}}\)
\(\Rightarrow-3P\left(2018\right)+P\left(2019\right)=6\left(2019-a+a-2018\right)-4037\)
\(=6.1-4037=-4031\)
Vậy \(-3P\left(2018\right)+P\left(2019\right)=-4031\)
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)