khai trien cac bieu thuc sau
(2x+y)^2
(x-y/2)^2
(x^2+y/2)(x^2-y/2)
(x-2y)^2(x+2y)^2
(x+y)^2
(x-2y)^2
(xy^2+1)(xy^2-1)
(x+y)^2-4(x-y)+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}\)
\(=\left(\frac{x-y}{2y-x}+\frac{x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}\right):\frac{\left(y+2x^2+2\right)\left(y+2x^2-2\right)}{\left(x+1\right)\left(x+y\right)}:\frac{1}{2x^2+y+2}\)
\(=\frac{y+2x^2-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+1\right)\left(x+y\right)}{\left(y+2x^2+2\right)\left(y+2x^2-2\right)}.\left(2x^2+y+2\right)\)
\(=\frac{\left(x+1\right)}{\left(2y-x\right)}\)
\(\left(2x+y\right)^2=4x^2+4xy+y^2\)
\(\left(x-\frac{y}{2}\right)^2=x^2-xy+\frac{y^2}{4}\)
\(\left(x^2+\frac{y}{2}\right)\left(x^2-\frac{y}{2}\right)=x^4-\frac{y^2}{4}\)
\(\left(x-2y\right)^2\left(x+2y\right)^2=\left(x^2-4y^2\right)^2\)
\(=x^4-8x^2y^2+16y^4\)
\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\left(x-2y\right)^2=x^2-4xy+4y^2\)
\(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
\(\left(x+y\right)^2-4\left(x-y\right)+4=x^2+2xy+y^2-4x+4y+4\)
\(\left(2x+y\right)^2=4x^2+4xy+y^2\)
\(\left(x-\frac{y}{2}\right)^2=x^2-xy+\frac{y^2}{4}\)
\(\left(x^2+\frac{y}{2}\right)\left(x^2-\frac{y}{2}\right)=x^4-\frac{x^2y}{2}+\frac{x^2y}{2}-\frac{y^2}{4}=x^4-\frac{y^2}{4}\)
\(\left(x-2y\right)^2\left(x+2y\right)^2=x^4-8x^2y^2+16y^4\)
\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\left(x-2y\right)^2=x^2-4xy+4y^2\)
\(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-xy^2+xy^2-1=x^2y^4-1\)
\(\left(x+y\right)^2-4\left(x-y\right)+4=x^2+2xy+y^2-4x+4y+4\)