tìm TXĐ của
1.y=sin3x
2.y=cosx/2
3.y=\(\sqrt{\frac{\sin x+2}{\cos x+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`
Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`
2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`
`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`
3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.
Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?
1.
Hàm số xác định khi \(\left\{{}\begin{matrix}\dfrac{1+x}{1-x}\ge0\\1-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x< 1\\x\ne1\end{matrix}\right.\Leftrightarrow-1\le x< 1\)
2.
Hàm số xác định khi \(cosx+1\ne0\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne-\pi+k2\pi\)
3.
Hàm số xác định khi \(cosx-cos3x\ne0\Leftrightarrow sin2x.sinx\ne0\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{k\pi}{2}\end{matrix}\right.\)
do hàm \(\cos x,\sin x\)luôn xđ trên R nên:
a) Y xđ \(\Leftrightarrow\frac{x+1}{x+2}xđ\Leftrightarrow x\ne-2\)\(\Rightarrow D=R\backslash\left\{-2\right\}\)
b) y xđ\(\Leftrightarrow x+4\ge0\Leftrightarrow x\ge-4\Rightarrow D=[-4,+\infty)\)
c) Y xđ \(\Leftrightarrow x^2-3x+2\ge0\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le1\end{cases}\Rightarrow}D=(-\infty,1]U[2,+\infty)\)
Tìm TXĐ các hàm số:
a, y = sin \(2-\sqrt{x-1}\)
b, y = \(\dfrac{tanx}{cos2x+1}\)
c, y = \(\sqrt{cosx}\)
ĐKXĐ:
a. \(x-1\ge0\Rightarrow x\ge1\)
b. \(\left\{{}\begin{matrix}cosx\ne0\\cos2x+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cos2x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\2x\ne\pi+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)
c.
\(cosx\ge0\Rightarrow-\dfrac{\pi}{2}+k2\pi\le x\le\dfrac{\pi}{2}+k2\pi\)
a/ \(x+2\ne0\Rightarrow x\ne-2\)
b/ \(x+4\ge0\Rightarrow x\ge-4\)
c/ \(x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
a, ĐK: \(x\ne\dfrac{k\pi}{2}\)
\(y=f\left(x\right)=\dfrac{1}{tanx}\)
\(f\left(-x\right)=\dfrac{1}{tan\left(-x\right)}=-\dfrac{1}{tanx}=-f\left(x\right)\Rightarrow\) Là hàm số lẻ.
ĐKXĐ:
a. \(sinx.cosx\ne0\Leftrightarrow sin2x\ne0\)
\(\Rightarrow2x\ne k\pi\Rightarrow x\ne\frac{k\pi}{2}\)
b. ĐKXĐ: \(3-sinx\ge0\Rightarrow sinx\le3\) (luôn đúng)
TXĐ của hàm số là R
c. ĐKXĐ: \(\left\{{}\begin{matrix}\frac{sin^2x}{1+sinx}>0\\1+sinx\ne0\end{matrix}\right.\)
\(\Rightarrow sinx\ne-1\Rightarrow x\ne-\frac{\pi}{2}+k2\pi\)
d. \(cos\left(2x-\frac{\pi}{4}\right)\ne0\Leftrightarrow2x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\frac{3\pi}{8}+\frac{k\pi}{2}\)
Lời giải:
1. TXĐ: $x\in\mathbb{R}$
2. TXĐ: $x\in\mathbb{R}$
3.
ĐKXĐ: \(\left\{\begin{matrix} \cos x+1\neq 0\\ \frac{\sin x+2}{\cos x+1}\geq 0\end{matrix}\right.\Leftrightarrow \cos x\neq -1\)
\(x\neq \pi (2k+1)\) với $k$ nguyên.
Vậy TXĐ là \(x\in\mathbb{R}|\frac{x-\pi}{2\pi}\not\in\mathbb{Z}\)