Tính giá trị biểu thức. Tính giá trị biểu thức 28 x 3 + 22 x a với a = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi tính giá trị của biểu thức có chứa dấu ( ) thì ta thực hiện các phép tính trong ngoặc trước.
b) Tính :
3 x (17 + 22) = 3 x 39 = 117
Giá trị của biểu thức 3 x (17 + 22) là 117.
(58 – 23) : 5 = 35 : 5 = 7.
Giá trị của biểu thức (58 – 23) : 5 = 7.
Với a = 8 thì giá trị của biểu thức 127 + 8 x 6 = 127 + 48 = 175
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
- Tính giá trị biểu thức:
a) (2/5 x 25/29) + (3/5 x 25/29)
= (50/145) + (75/145)
= 125/145
b) (5/2 x 3/7) - (3/14 : 6/7)
= 15/14 - (3/14 x 7/6)
= 15/14 - 1/2
= (30/28) - (14/28)
= 16/28
= 4/7
c) (15/4 : 5/12) - (6/5 : 11/15)
= (15/4 x 12/5) - (6/5 x 15/11)
= 180/20 - 90/55
= 9 - 18/11
= (99/11) - (18/11)
= 81/11
= 7 4/11
- Tính giá trị biểu thức:
a) (2/3) + (20/21 x 3/2 x 7/5)
= 2/3 + (60/210)
= 2/3 + 2/7
= (14/21) + (6/21)
= 20/21
b) (5/17 x 21/32 x 47/24 x 0)
= 0
c) (11/3 x 26/7) - (26/7 x 8/3)
= (286/21) - (208/21)
= 78/21
= 3 9/21
= 3 3/7
- Tìm x:
a) (25/8) : x = 5/16
=> (25/8) x (16/5) = x
=> 4 = x
b) x + (7/15) = 6/15
=> x = (6/15) - (7/15)
=> x = -1/15
c) x : (28/49) = 7/12
=> x x (49/28) = 7/12
=> x = (7/12) x (28/49)
=> x = 1/2
- Tìm x:
a) 6 x x = (5/8) : (3/4)
=> 6x = (5/8) x (4/3)
=> 6x = 20/24
=> 6x = 5/6
=> x = (5/6) / 6
=> x = 5/36
câu,b,không,đủ,thông,tin,nhan,bạn.
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
`a, (2 \times 6) \times 4`
`= 12 \times 4=48`
`2 \times (6 \times 4)`
`= 2 \times 24 = 48`
` (8 \times 5) \times 2`
`= 40 \times 2=80`
` 8 \times (5 \times 2)`
` 8 \times 10 = 80`
`b,` Giá trị của `2` biểu thức `(2 \times 6) \times 4, 2 \times (6 \times 4)` bằng nhau `(=48)`
`-` Giá trị của `2` biểu thức `(8 \times 5) \times 2, 8 \times (5 \times 2)` bằng nhau `(=80)`
`c,`
` 25 \times (2 \times 2) =25 \times 4 = 100`
` (25 \times 2) \times 2= 50 \times 2 = 100 `
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
khi viết thêm số 1 và bên trái số 27 tì số mới hơn số đã cho
: 100 đơn vị
Bài giải
Số 27 khi viết thêm vào bên trái 1 số 1 thì số đó là 127
Số mới hơn số đã cho :
\(127-27=100\left(\text{đơn vị}\right).\)
Đáp số : 100 đơn vị.