K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

Giải:

\(VP=\frac{sina+sin2a}{1+cosa+cos2a}=\frac{sina+2sinacosa}{1+cosa+2cos^2a-1}=\frac{sina\left(1+2cosa\right)}{cosa\left(1+2cosa\right)}=\frac{sina}{cosa}=tana=VT\)

=> ĐPCM

11 tháng 6 2021

a) Có: `1+tan^2a=1/(cos^2a)`

`<=> 1+(3/5)^2=1/(cos^2a)`

`=> cosa=\sqrt10/4`

`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`

b) Có: `sin^2a + cos^2a=1`

`<=> sin^2a + (1/4)^2=1`

`=> sina=\sqrt15/4`

`=> tana = (sina)/(cosa) = \sqrt15`

 

11 tháng 6 2021

Má ơi,tính sai:

a)\(\left[{}\begin{matrix}cos\alpha=\dfrac{5\sqrt{34}}{34}\\cos\alpha=\dfrac{-5\sqrt{34}}{34}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}sin\alpha=cos\alpha.tan\alpha=\dfrac{3\sqrt{34}}{34}\\sin\alpha=cos\alpha.tan\alpha=\dfrac{-3\sqrt{34}}{34}\end{matrix}\right.\)

b)\(\left[{}\begin{matrix}sin\alpha=\dfrac{\sqrt{15}}{4}\\sin\alpha=\dfrac{-\sqrt{15}}{4}\end{matrix}\right.\)\(\left[{}\begin{matrix}tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\sqrt{15}\\tatn\alpha=-\sqrt{15}\end{matrix}\right.\)

18 tháng 4 2021

(Sina -cosa)^2 =1:25

<=> sin^2a +cos^2a -2sina.cosa =1:25

Ta có sin^2a+cos^2a = 1 

<=> 1-2 sina.cosa =1:25

2sina.cosa =24:25

CT : sin2a= 2sina.cosa=24:25

 Có sin^2 .2a + co^2.2a = 1 

       (24:25)^2 + cos^2.2a =1 

Từ đây rút cos 2a = căn 1-(24:25)^2 =...  bạn  tự làm tiếp nha !

19 tháng 8 2017

4

27 tháng 8 2021

có A=\(\dfrac{1-cosa+2cos^2a-1}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)