K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

1. Vì \(x=7\)\(\Rightarrow x+1=8\)

\(\Rightarrow A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......-8x^2+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-.......-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-......-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

2. Gọi 3 số cần tìm lần lượt là \(a\)\(a+1\)\(a+2\)\(a\inℕ\))

Tích của 2 số đầu là: \(a\left(a+1\right)\)

Tích của 2 số sau là: \(\left(a+1\right)\left(a+2\right)\)

Vì tích của 2 số đầu nhỏ hơn tích của 2 số sau là 50 nên ta có phương trình:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow\left(a+1\right).\left(a+2-a\right)=50\)

\(\Leftrightarrow2.\left(a+1\right)=50\)

\(\Leftrightarrow a+1=25\)

\(\Leftrightarrow a=24\)

Vậy 3 số cần tìm lần lượt là 24 , 25 , 26

6 tháng 9 2020

1) Ta có: \(x=7\Rightarrow x+1=8\)

Thay vào:

\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)

\(A=x-5=7-5=2\)

25 tháng 10 2021

Bài 1:

Ta có: \(8=7+x=x+1\)

\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}-...-x^3-x^2+x^2+x-5\)

\(\Rightarrow B=x-5\)

\(\Rightarrow B=7-5\)

\(\Rightarrow B=2\)

 

25 tháng 10 2021

gọi 3 số tự nhiên liên tiếp là \(a,a+1,a+2\)

ta có: \(a\left(a+1\right)=\left(a+1\right)\left(a+2\right)-50\\ \Leftrightarrow a^2+a=a^2+3a+2-50\\ \Leftrightarrow-2a=-48\\ \Leftrightarrow a=24\)

         \(\Rightarrow a+1=25;a+2=26\)

Vậy 3 số tự nhiên liên tiếp là \(24;25;26\)

 

22 tháng 12 2021

ta có: 8=7+1=x+1

\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)

\(\Rightarrow B=x-5\)

\(\Rightarrow B=7-5\)

\(\Rightarrow B=2\)

18 tháng 2 2021

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

 

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

10 tháng 5 2022

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

Tham khảo cách này nhoá~

10 tháng 5 2022

yeu

2 tháng 7 2017

1 ) \(x=7\Rightarrow x+1=8\)

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+....-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

2 ) Gọi 3 số tự nhiên liên tiếp đó là a; a + 1; a + 2 (a thuộc N)

theo đề bài ta có : \(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+3a+2-a^2-a=50\)

\(\Leftrightarrow2a+2=50\)

\(\Rightarrow a=24\)

Vậy 3 số TN liên tiếp cần tìm là 24;25;26

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

5 tháng 1 2022

Gọi 3 số đó là \(a-1,a,a+1(a\in \mathbb{N^*})\)

Theo đề ta có: \(a\left(a+1\right)-a\left(a-1\right)=50\)

\(\Rightarrow a\left(a+1-a+1\right)=50\\ \Rightarrow2a=50\\ \Rightarrow a=25\)

Vậy 3 số đó là 24,25,26

5 tháng 1 2022

cảm ơn rất nhiều

19 tháng 2 2023

đặt a,a+1,a+2

ta có :(a+1)(a+2)-a(a+1)=50

a^2+3a+2-a^2-a=50

2a+2=50

a=24

 vậy ba số đó là 24,25,26