K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Ta có Đặt B = \(\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}\)(1999 số hạng)                                 

\(=\left(1+1+1+...+1\right)+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}\)(1999 số hạng 1)            

\(=1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+...+\left(\frac{1}{1999}+1\right)\)(1998 cặp số)

 = \(\frac{2000}{2}+\frac{2000}{3}+...+\frac{2000}{1999}+\frac{2000}{2000}\)

\(2000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1999}+\frac{1}{2000}\right)\)

Khi đó \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}=\frac{1}{2000}\)

7 tháng 8 2016

Ta có:

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=2001\)

15 tháng 2 2020

bn cộng trên tử rồi thì phải trừ đi chứ ko phân số sẽ thay đổi

 

 

8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

24 tháng 10 2017

mk ko bt 123

27 tháng 10 2017

buồn quá lúc sáng lại bị cô phê bình vì bài này

22 tháng 3 2018

Cứu với !

22 tháng 3 2018

với 1 ở câu cuối là nhân hay chia hay cộng hay trừ hả bn?

23 tháng 5 2017

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)

\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)

\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)

23 tháng 5 2017

$\ge $ 

31 tháng 8 2016

1998 + 2000 + 2 = ( 1998 + 2 ) + 2000

                        = 2000 + 2000

                        = 4000

1999 x 1999 + 1 = 3996002

8 tháng 9 2016

1998 + 2000 + 2 / 1999 x 1999 + 1 = 4001

                      

11 tháng 6 2016

A = ( 1999 x 1998 + 1998 x 1997 ) x ( 1 + 1/2 : 3/2 - 4/3 )

A = ( 1999 x 1998 + 1998 x 1997 ) x ( 1 + 1/3 - 4/3 )

A = ( 1999 x 1998 + 1998 x 1997 ) x [ 1 + ( -1 ) ]  

A = ( 1999 x 1998 + 1998 x 1997 ) x 0

A = 0