Tìm Min \(K=5x^2+2y^2+4z^2-16x-4y-2xy+4yz+30\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=x^2-2xy+2y^2-4y+2016=\)\(x^2-2xy+y^2+y^2-4y+4+2012=\)\(\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\)\(\left(x-y\right)^2+\left(y-2\right)^2+2012\)
Vì \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow K_{min}=2012\) Khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\y=2\end{cases}\Rightarrow}x=y=2}\)
\(x^2-2xy+2y^2-4y+2016\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+2012\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+2014\)
Xét đa thức \(\left(x-y\right)^2+\left(y-2\right)^2\)
Dễ thấy \(\left(x-y\right)^2+\left(y-2\right)^2\) luôn luôn dương với mọi giá trị của \(x,y\)
Vậy giá trị nhỏ nhất của k=2014
a, \(2x^2-4xy+4y^2-6x\)
\(=x^2-2xy-2xy+4y^2+x^2-3x-3x+9-9\)
\(=\left(x-2y\right)^2+\left(x-3\right)^2-9\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2y\right)^2+\left(x-3\right)^2-9\ge-9\)
Để \(\left(x-2y\right)^2+\left(x-3\right)^2-9=-9\) thì
\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3-2y=0\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1,5\\x=3\end{matrix}\right.\)
Vậy..............
b, \(z^2-4zt+5t^2-2t+13\)
\(=z^2-2zt-2zt+4t^2+t^2-t-t+1+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của \(z;t\in R\) ta có:
\(\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Để \(\left(z-2t\right)^2+\left(t-1\right)^2+12=12\) thì
\(\left\{{}\begin{matrix}\left(z-2t\right)^2=0\\\left(t-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
Vậy...............
Câu c tường tự !!!
a,Đặt A= \(2x^2-4xy+4y^2-6x\)
\(=\left(2x^2-4xy-6x\right)+4y^2\)
\(=2\left(x^2-2xy-3x\right)+4y^2\)
\(=2\left[x^2-2x\left(y+\dfrac{3}{2}\right)+\left(y+\dfrac{3}{2}\right)^2\right]+4y^2-\left(y+\dfrac{3}{2}\right)^2\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+4y^2-y^2-3y-\dfrac{9}{4}\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y^2-y+\dfrac{1}{4}\right)-3\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2-3\)
Với mọi giá trị của x;y ta có:
\(\left(x-y-\dfrac{3}{2}\right)^2\ge0;\left(y-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x-y-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2-3\ge-3\)
Vậy Min A = -3 khi \(\left\{{}\begin{matrix}x-y-\dfrac{3}{2}=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}-\dfrac{3}{2}=0\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
b, Đặt B = \(z^2-4zt+5t^2-2t+13\)
\(=\left(z^2-4zt+4t^2\right)+\left(t^2-2t+1\right)+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của z;t ta có:
\(\left(z-2t\right)^2\ge0;\left(t-1\right)^2\ge0\)
\(\Rightarrow\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Vậy Min B = 12 khi \(\left\{{}\begin{matrix}z-2t=0\\t-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
c, Đặt C = \(16x^2-8x+y^2-2y\)
\(=\left(16x^2-8x+1\right)+\left(y^2-2y+1\right)-2\)
\(=\left(4x-1\right)^2+\left(y-1\right)^2-2\)
Với mọi giá trị x;y ta có:
\(\left(4x-1\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(4x-1\right)^2+\left(y-1\right)^2-2\ge-2\)
Vậy Min C = -2 khi \(\left\{{}\begin{matrix}4x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=1\end{matrix}\right.\)
\(K=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)Min K = 2012 <=> x = y = 2
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
K = 5x2 + 2y2 + 4z2 - 16x - 4y - 4xz + 4yz + 30 ( sửa -2xy thành -4xz nhá :)) )
= [ ( x2 - 2xy + y2 ) - 4xz + 4yz + 4z2 ] + ( 4x2 - 16x + 16 ) + ( y2 - 4y + 4 ) + 10
= [ ( x - y )2 - 2( x - y )2z + ( 2z )2 ] + ( 2x - 4 )2 + ( y - 2 )2 + 10
= ( x - y - 2z )2 + ( 2x - 4 )2 + ( y - 2 )2 + 10
\(\hept{\begin{cases}\left(x-y-2z\right)^2\ge0\forall x,y,z\\\left(2x-4\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y-2z\right)^2+\left(2x-4\right)^2+\left(y-2\right)^2+10\ge10\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-2z=0\\2x-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=2\\z=0\end{cases}}\)
=> MinK = 10 <=> x = y = 2 ; z = 0
Sai thì bỏ qua nhé ;-;
à quên thêm -4xz :)) sr sr :v