chứng minh rằng:
a.\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\).....+\(\frac{1}{2010^2}\)<1
b.\(\frac{1}{4}\)+\(\frac{1}{16}\)+\(\frac{1}{36}\)+\(\frac{1}{64}\)+\(\frac{1}{100}\)+\(\frac{1}{196}\)<\(\frac{1}{2}\)
c.\(\frac{2009^{2008}-1}{2009^{2009}-1}< \frac{2009^{2007}+1}{2009^{2008}+1}\)
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)