K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

PT \(\Leftrightarrow\left(y^2-5y+6\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(x^2+yx-4x-y+3\right)=56\) 

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)

Ta nhận thấy x+y-3 là tổng của y-2, x-1

Đến đây ta xét lần lượt các trường hợp là ra

10 tháng 3 2018

Xét đen-ta thử đi bạn

6 tháng 5 2018

Tách ra \(\left(x-1\right)\left(y-2\right)\left[\left(x-1\right)+\left(y-2\right)\right]=56\)

Xét các cặp \(\left(1;7\right);\left(-8;1\right);\left(7;-8\right)\)và hoán vị

NV
25 tháng 11 2019

\(\Leftrightarrow y^2-5y+6+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(y-4\right)x\)

\(\Leftrightarrow\left(y-2\right)\left[x^2+\left(y-4\right)x-y+3\right]=56\)

Đến đây là pt ước số cơ bản rồi, hơi nhiều cặp nên bạn tự giải nốt :(

NV
14 tháng 7 2020

\(\left(y-2\right)\left(y-3\right)+56=\left(y-2\right)x^2+\left(y-2\right)\left(xy-4x\right)\)

\(\Leftrightarrow\left(y-2\right)\left(x^2+xy-4x-y+3\right)=56\)

\(\Leftrightarrow\left(y-2\right)\left[\left(x-1\right)\left(x-3\right)+y\left(x-1\right)\right]=56\)

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)\left(x+y-3\right)=56\)

Tới đây bạn giải pt ước số bình thường (phân tích 56 thành tích 3 số là ok)

\(P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{7}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+xy+yz+zx+xy+yz+zx}+\frac{7}{\frac{\left(x+y+z\right)^2}{3}}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}=30\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

7 tháng 10 2017

nhân cái đầu với cái cuối