K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: a+b+c=2020

\(\Leftrightarrow\left\{{}\begin{matrix}a=2020-b-c\\b=2020-a-c\\c=2020-b-a\end{matrix}\right.\)

Ta có: \(P=\left(ab+c-2019\right)\left(bc+a-2019\right)\left(ca+b-2019\right)\)

\(=\left(ab+2020-a-b-2019\right)\left(bc+2020-b-c-2019\right)\left(ca+2020-a-c-2019\right)\)

\(=\left(ab-a-b+1\right)\left(bc-b-c+1\right)\left(ca-a-c+1\right)\)

\(=\left[a\left(b-1\right)-\left(b-1\right)\right]\left[b\left(c-1\right)-\left(c-1\right)\right]\left[a\left(c-1\right)-\left(c-1\right)\right]\)

\(=\left(b-1\right)\left(a-1\right)\left(c-1\right)\left(b-1\right)\left(c-1\right)\left(a-1\right)\)

\(=\left[\left(a-1\right)\left(b-1\right)\left(c-1\right)\right]^2\)

Vậy: P là số chính phương(đpcm)

20 tháng 5 2019

sai ở chỗ nào vậy bạn

8 tháng 8 2017

Gợi ý cách giải: Thế a = 1 - b - c vào P sau đó phân tích số chính phương là ra

2 tháng 12 2017

\(2\sqrt{2}\)

14 tháng 8 2021

Ta có: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

25 tháng 8 2021

anh/chị giúp em với ạ!