a) a2 + 9 - 6a
b) x2 - x + 1/4
c) -x2 + 4x - x
Vận dụng hằng đẳng thức, thu gọn các biểu thức sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàn thiện HĐT ta thu được các đơn thức cần điền vào “…”.
a) x 2 + 4x + 4 = ( x + 2 ) 2 . b) 4 x 2 – 12x + 9 = ( 2 x – 3 ) 2 .
c) 4 x 2 – 12xy + 9 y 2 = ( 2 x – 3 y ) 2 .
Chú ý: phép trừ ta chuyển thành cộng đại số.
d) x − y 2 x + y 2 = x 2 − y 2 4 .
\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)
Ta có:
f(x) = x4 – x2 + 6x – 9 = x4 – (x2 – 6x +9) = – (x-3)2
= (x2 –x + 3).(x2 + x - 3)
+ Tam thức x2 – x + 3 có Δ = -11 < 0, a = 1 > 0 nên x2 – x + 3 > 0 với ∀ x ∈ R.
+ Tam thức x2 + x – 3 có hai nghiệm
Ta có bảng xét dấu sau:
Kết luận:
Tam thức x2 - 2x + 2 có Δ = -4 < 0, hệ số a = 1 > 0 nên x2 - 2x + 2 > 0 với ∀ x ∈ R
Tam thức x2 - 2x - 2 có hai nghiệm là x1 = 1 - √3; x2 = 1 + √3.
Tam thức x2 - 2x có hai nghiệm là x1 = 0; x2 = 2
Ta có bảng xét dấu :
Kết luận : g(x) < 0 khi x ∈ (1 - √3; 0) ∪ (2; 1 + √3)
g(x) = 0 khi x = 1- √3 hoặc x = 1 + √3
g(x) > 0 khi x ∈ (-∞; 1 - √3) ∪ (0; 2) ∪ (1 + √3; +∞)
g(x) không xác định khi x = 0 và x = 2.
a) \(=\left(x-2\right)^2\)
b) \(=\left(3x-2\right)^2\)
c) \(=\left(x-3y\right)^2\)
d) \(=\left(\dfrac{x}{2}+1\right)^2\)
e) \(=\left(x-4\right)^2\)
f) \(=\left(\dfrac{1}{2}xy^2+1\right)^2\)
g) \(=\left(x-1\right)\left(x+1\right)\)
h) \(=\left(5x-4\right)\left(5x+4\right)\)
a) ĐKXĐ: 3x + 6 khác 0
x khác -2
b) A = (x² + 4x + 4)/(3x + 6)
= (x + 2)²/[3(x + 2)]
= (x + 2)/3
c) Khi x = 1/4, ta có:
A = (1/4 + 2)/3
= (9/4)/3
= 3/4
Bài giải
\(a,\text{ }a^2+9-6a=a^2+2\cdot3a+3^2=\left(a-3\right)^2\)
\(b,\text{ }x^2-x+\frac{1}{4}=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
\(c,\text{ }-x^2+4x-x=3x-x^2=\left(\sqrt{3x}\right)^2-x^2=\left(\sqrt{3x}-x\right)\left(\sqrt{3x}+x\right)\)( Đề nói vận dụng hằng đẳng thức để rút gọn nên mình đưa về hiệu hai ình phương nha ! )
a) \(a^2+9-6a\)
\(=\left(a-3\right)^2\)
b) \(x^2-x+\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2\)
c) \(-x^2+4x-x\)
\(=3x-x^2\)
\(=x\left(3-x\right)\)