K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

a) Ta có: \(A=1+3+3^2+...+3^{99}+3^{100}\)

=> \(3A=3+3^2+3^3+...+3^{100}+3^{101}\)

=> \(3A-A=\left(3+3^2+...+3^{101}\right)-\left(1+3+...+3^{100}\right)\)

<=> \(2A=3^{101}-1\)

=> \(A=\frac{3^{101}-1}{2}\)

b) Ta có: \(B=1+4+4^2+...+4^{100}\)

=> \(4B=4+4^2+4^3+...+4^{101}\)

=> \(4B-B=\left(4+4^2+...+4^{101}\right)-\left(1+4+...+4^{100}\right)\)

<=> \(3B=4^{101}-1\)

=> \(B=\frac{4^{101}-1}{3}\)

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

20 tháng 10 2021

\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)