K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

Áp dụng công thức: $\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x=2\cos ^2x-1$ ta có:

\(\frac{6+2\cos 4a}{1-\cos 4a}=\frac{6+2(2\cos ^22a-1)}{2\sin ^22a}=\frac{2+2\cos ^22a}{\sin ^22a}=\frac{2+2(\cos ^2a-\sin ^2a)^2}{4\sin ^2a\cos ^2a}\)

\(=\frac{1+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{(\sin ^2a+\cos ^2a)^2+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{2(\sin ^4a+\cos ^4a)}{2\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a}{\sin ^2a\cos ^2a}\)

\(=\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}=\tan ^2a+\cot ^2a\) (đpcm)

NV
30 tháng 4 2021

\(tan^2a+cot^2a=\dfrac{sin^2a}{cos^2a}+\dfrac{cos^2a}{sin^2a}=\dfrac{sin^4a+cos^4a}{\left(sina.cosa\right)^2}=\dfrac{\left(sin^2a+cos^2a\right)^2-2\left(sina.cosa\right)^2}{\left(\dfrac{1}{2}.2sina.cosa\right)^2}\)

\(=\dfrac{1-\dfrac{1}{2}sin^22a}{\dfrac{1}{4}sin^22a}=\dfrac{8-4sin^22a}{2sin^22a}=\dfrac{8-2\left(1-cos4a\right)}{1-cos4a}=\dfrac{6+2cos4a}{1-cos4a}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

a)

\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)

b)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)

c)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)

\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

NV
14 tháng 6 2020

\(cot^2a+tan^2a=\frac{cos^2a}{sin^2a}+\frac{sin^2a}{cos^2a}=\frac{cos^4a+sin^4a}{sin^2a.cos^2a}=\frac{8\left(\frac{1+cos2a}{2}\right)^2+8\left(\frac{1-cos2a}{2}\right)^2}{2\left(2sina.cosa\right)^2}\)

\(=\frac{2+4cos2a+2cos^22a+2-4cos2a+2cos^22a}{2sin^22a}=\frac{4+4cos^22a}{2sin^22a}\)

\(=\frac{4+4\left(\frac{1+cos4a}{2}\right)}{2\left(\frac{1-cos4a}{2}\right)}=\frac{6+2cos4a}{1-cos4a}\)

AH
Akai Haruma
Giáo viên
2 tháng 5 2019

Lời giải:

Ta có:

\(\frac{\tan ^3a}{\sin ^2a}-\frac{1}{\sin a\cos a}+\frac{\cot ^3a}{\cos ^2a}=\frac{\tan ^3a\cos ^2a+\cot ^3a\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)

\(=\frac{\frac{\sin ^3a}{\cos ^3a}.\cos ^2a+\frac{\cos ^3a}{\sin ^3a}.\sin ^2a}{\sin ^2a\cos ^2a}-\frac{\sin a\cos a}{\sin ^2a\cos ^2a}\)

\(=\frac{\frac{\sin ^3a}{\cos a}+\frac{\cos ^3a}{\sin a}-\sin a\cos a}{\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a}{\sin ^3a\cos ^3a}\)

\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a+\cos ^4a-\sin ^2a\cos ^2a)}{\sin ^3a\cos ^3a}\)

\(=\frac{\sin ^6a+\cos ^6a}{\sin ^3a\cos ^3a}=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}=\tan ^3a+\cot ^3a\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:
Ta có:

\(\frac{\cot ^2a-\cos ^2}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}=1-\frac{\cos ^2a}{\cot ^2a}+\frac{\sin a\cos a}{\cot a}\)

\(=1-\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}+\frac{\sin a\cos a}{\frac{\cos a}{\sin a}}=1-\sin ^2a+\sin ^2a=1\)

Ta có đpcm.

NV
28 tháng 11 2019

\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)

\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)

\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này

\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)

\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)

\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)

\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)

27 tháng 6 2019

Giả sử có \(\Delta ABC\)\(A=90^o;AH\) là đường cao

\(\sin\widehat{B}=\frac{AC}{BC};\cos\widehat{B}=\frac{AB}{BC};\tan\widehat{B}=\frac{AC}{AB};\cot\widehat{B}=\frac{AB}{AC}\)

\(\frac{\cot^2\widehat{B}-\cos^2\widehat{B}}{\cot^2\widehat{B}}+\frac{\sin\widehat{B}.\cos\widehat{B}}{\cot\widehat{B}}=\frac{\frac{AB^2}{AC^2}-\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC}{BC}.\frac{AB}{BC}}{\frac{AB}{AC}}\)

\(=\frac{\frac{AB^2}{AC^2}}{\frac{AB^2}{AC^2}}-\frac{\frac{AB^2}{BC^2}}{\frac{AB^2}{AC^2}}+\frac{\frac{AC.AB}{BC^2}}{\frac{AB}{AC}}=1-\frac{AC^2}{BC^2}+\frac{AC^2}{BC^2}=1\)

27 tháng 6 2019

Mấy bài nè vận dụng hệ thức sin cos tan cot

16 tháng 7 2021

B A C a

Xét ΔBAC vuông tại B có a = ^A ta có :

a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)

b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)

c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)

d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)

e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)

\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)

f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)

\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)