\(\sqrt{x+3}+2\sqrt{4x+12}-\frac{1}{3}\sqrt{9x+27}=8\)
\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\)
Giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)
\(\Leftrightarrow5-2x=36\)
\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)
2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)
\(\Leftrightarrow2-x=x+1\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)
\(\Leftrightarrow\left|x-5\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\left(x\ge\frac{1}{2}\right)\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)
\(\Leftrightarrow2x-1=x+5\)
\(\Leftrightarrow2x-1-x-5=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\left(tm\right)\)
vậy x=6 là nghiệm của phương trình
b) \(\sqrt{x+3}+2\sqrt{4x+12}-\frac{1}{3}\sqrt{9x+27}=8\left(x\ge-3\right)\)
\(\Leftrightarrow\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)
\(\Leftrightarrow\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)
\(\Leftrightarrow4\sqrt{x+3}=8\)
\(\Leftrightarrow x+3=4\)
<=> x=-1 (tmđk)
vậy x=-1 là nghiệm của phương trình
d. \(\sqrt{9x^2+12x+4}=4\)
<=> \(\sqrt{\left(3x+2\right)^2}=4\)
<=> \(|3x+2|=4\)
<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)
\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)
\(\Leftrightarrow x=1\)
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
Bạn viết lại để bài giùm
Có duy nhất câu c bạn viết đúng đề (có dấu "="), còn lại tới 3 câu ko biết dâu "=" ở đâu
\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-\left(x+5\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)
a)
\(\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)
\(\sqrt{x+3}+2\cdot2\sqrt{x+3}-\frac{1}{3}\cdot3\sqrt{x+3}=8\)
\(\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)
\(4\sqrt{x+3}=8\)
\(\sqrt{x+3}=2\)
\(\orbr{\begin{cases}2\ge0\left(llđ\right)\\x+3=2^2\end{cases}}\)
\(x+3=4\)
\(x=1\)
b)
\(\orbr{\begin{cases}x^2+10x+25\ge0\\4x^2-4x+1=x^2+10x+25\end{cases}}\)
\(\orbr{\begin{cases}\left(x+5\right)^2\ge0\left(lld\right)\\3x^2-6x-24=0\end{cases}}\)
\(\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)