Cho tam giác ABC có trung tuyến AM, gọi I là trung điểm AM, J đối xứng với I qua M và K là điểm trên cạnh AC sao cho \(\overrightarrow{AK}=\frac{1}{4}\overrightarrow{AC}\), biểu diễn \(\overrightarrow{JK}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề, I không thể là trung điểm AC.
Vì I là trung điểm AC, K thuộc AC nghĩa là I, K đều thuộc AC, vậy B,I,K thẳng hàng chỉ khi B cũng thuộc AC nốt (vô lý)
a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).
a.
\(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{BM}\)
b.
\(\overrightarrow{AE}=3\overrightarrow{EM}=3\overrightarrow{EA}+3\overrightarrow{AM}\Rightarrow4\overrightarrow{AE}=3\overrightarrow{AM}\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\overrightarrow{AM}\)
\(\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=-\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}=-\dfrac{5}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+\dfrac{3}{5}\overrightarrow{AC}=\dfrac{8}{5}\overrightarrow{BE}\)
\(\Rightarrow\) B, E, K thẳng hàng
MN là đường trung bình của tam giác ABC
\(\Rightarrow\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
Từ giả thiết:
\(\overrightarrow{KM}=-2\overrightarrow{KN}=-2\left(\overrightarrow{KM}+\overrightarrow{MN}\right)\)
\(\Rightarrow3\overrightarrow{KM}=2\overrightarrow{NM}\Rightarrow\overrightarrow{KM}=\dfrac{2}{3}\overrightarrow{NM}\)
\(\Rightarrow\overrightarrow{MK}=\dfrac{2}{3}\overrightarrow{MN}=\dfrac{2}{3}\left(-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
M là trung điểm AB \(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}\)
Do đó:
\(\overrightarrow{AK}=\overrightarrow{AM}+\overrightarrow{MK}=\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{BG}=\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)
I đối xứng B qua G \(\Rightarrow\) \(\overrightarrow{BI}=2\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(\Rightarrow\overrightarrow{BI}=\dfrac{4}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}=-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CA}+\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{CI}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{AJ}=\frac{3}{2}\overrightarrow{AM}=\frac{3}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\right)=\frac{3}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}\)
\(\overrightarrow{JK}=\overrightarrow{JA}+\overrightarrow{AK}=-\overrightarrow{AJ}+\overrightarrow{AK}=-\frac{3}{4}\overrightarrow{AB}-\frac{3}{4}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{AC}\)
\(=-\frac{3}{4}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}\Rightarrow\left\{{}\begin{matrix}m=-\frac{3}{4}\\n=-\frac{1}{2}\end{matrix}\right.\)