K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2019

Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)

7 tháng 9 2019

Bài 2:

a)Ta có: \({\left( {x + 2y} \right)^2} \le \left( {1 + 1} \right)\left( {{x^2} + 4{y^2}} \right) \Rightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \sqrt {\dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}} \Leftrightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)Mặt khác ta cũng có:

\( \dfrac{{{x^2} + 2xy + 4{y^2}}}{3} = \dfrac{{3{{\left( {x + 2y} \right)}^2} + {{\left( {x - 2y} \right)}^2}}}{{12}} \ge \dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}\\ \Rightarrow \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)

Từ đó suy ra: \(\sqrt {\dfrac{{{x^2} + 4{y^2}}}{2}} + \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \left| {x + 2y} \right| \ge x + 2y \)

Dấu bằng xảy ra khi và chỉ khi \(x=2y\ge0\)

Thay vào phương trình còn lại ta thu được:

\({x^4} - {x^3} + 3{x^2} - 2x - 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 3x + 1} \right) = 0 \Leftrightarrow x = 1 \Rightarrow y = \dfrac{1}{2} \)

Vậy nghiệm của hệ phương trình là: \(\left( {1;\dfrac{1}{2}} \right) \)

\(\boxed{Nguyễn Thành Trương}\)

7 tháng 9 2019

Bài 1: a liên hợp là ra mà nhỉ?

a) ĐK: \(x>-3\)

Mặt khác \(PT\Leftrightarrow\sqrt{\frac{1}{x+3}}-2+\sqrt{\frac{5}{x+4}}-2=0\)

\(\Leftrightarrow\frac{\frac{1}{x+3}-4}{\sqrt{\frac{1}{x+3}}+2}+\frac{\frac{5}{x+4}-4}{\sqrt{\frac{5}{x+4}}+2}=0\)

\(\Leftrightarrow\frac{-\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\) (quy đồng cái tử lên thôi)

\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{-1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right]=0\)

Cái ngoặc to nhìn liếc qua cũng thấy nó < 0.

Do đó \(x=-\frac{11}{4}\)

P/s: Về cơ bản hướng làm là vậy, khi là sẽ có thể có những sai sót, do em bị hư máy tính cầm tay:v. Đang rất GP đây này@@

\(\text{~tth~}\)

25 tháng 1 2020

\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)

Ta xét các trường hợp sau:

Trường hợp 1:

\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:

\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)

\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)

Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)

Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:

\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)

Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)

+ Nếu như:

\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)

+ Nếu như:

\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)

Trường hợp 2:

\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:

\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)

Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)

25 tháng 1 2020

Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v

3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)

\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)

Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)

\(\Leftrightarrow2b=1-\frac{1}{a}\)

Thay vào (1) ta được :

\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)

\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)

Giải pt được \(a=1\)

Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)

Ta có hệ :

\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy...

NV
18 tháng 4 2020

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{4x+y}=a\ge0\\\sqrt{x+2y}=b\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{2a^2-b^2}{7}\\y=\frac{4b^2-a^2}{7}\end{matrix}\right.\)

Ta được: \(\left\{{}\begin{matrix}a+b=5\\\frac{5\left(2a^2-b^2\right)}{21}-\frac{4b^2-a^2}{42}+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\21a^2-14b^2+42b-84=0\end{matrix}\right.\)

\(\Rightarrow21\left(5-b\right)^2-14b^2+42b-84=0\)

\(\Leftrightarrow b^2-24b+63=0\Rightarrow\left[{}\begin{matrix}b=21\Rightarrow a=-16\left(l\right)\\b=3\Rightarrow a=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{4x+y}=2\\\sqrt{x+2y}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+y=4\\x+2y=9\end{matrix}\right.\) \(\Leftrightarrow...\)

18 tháng 4 2020

Lấy PT1 trừ PT2 ta được

\(\sqrt{4x+y}-\frac{5}{3}x+\frac{1}{6}y=3\)

\(\Leftrightarrow6\sqrt{4x+y}-10x+y=18\)

đặt \(\sqrt{4x+y}=a\left(a\ge0\right)\)

\(\Rightarrow6a-\frac{5a^2-7y}{2}=18\)

\(\Leftrightarrow12a-5a^2+7y=36\)

Giải a theo y, rồi thay vào

3 tháng 5 2019

1)

a) \(\left\{{}\begin{matrix}2x-y=5\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x-y+x+y=5+4\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x=9\\x+y=4\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy (x;y)=(3;1)

b) \(16x^5-8x^3+x=0\Leftrightarrow x\left(16x^4-8x^2+1\right)=0\Leftrightarrow x\left[\left(4x^2\right)^2-2.4x^2.1+1^2\right]=0\Leftrightarrow x\left(4x^2-1\right)^2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=\frac{\pm1}{2}\end{matrix}\right.\)

Vậy S={\(-\frac{1}{2};0;\frac{1}{2}\)}

2)

A=\(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{4}+\frac{1}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{5-1}=\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{4}=\frac{\sqrt{5}-1+\sqrt{5}+1}{4}=\frac{2\sqrt{5}}{4}=\frac{\sqrt{5}}{2}\)

B=\(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}=\frac{4\left(3-\sqrt{5}\right)}{9-5}-\frac{8\left(1-\sqrt{5}\right)}{1-5}+3\sqrt{5}=\frac{4\left(3-\sqrt{5}\right)}{4}-\frac{8\left(\sqrt{5}-1\right)}{4}+3\sqrt{5}=3-\sqrt{5}-2\sqrt{5}+2+3\sqrt{5}=5\)