Tìm x:
a)( 2x + 1) mũ 2 = 49
b)( 2x - 1) mũ 4 = 81
c) (x + 1) mũ 3 = ( 2x) mũ 3
d) ( 2x + 1) mũ 3 = ( 3x) mũ 3
Mọi người giúp mk với, xin cảm ơn, mình đang gấp lắm!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+1\right)^3=27\)
\(\Leftrightarrow2x+1=3\)
\(\Leftrightarrow x=1\)
b) \(\left(2x-1\right)^3=125\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow x=3\)
c) \(\left(x+1\right)^4=\left(2x\right)^4\)
\(\Leftrightarrow x+1=2x\)
\(\Leftrightarrow x=1\)
d) \(\left(2x-1\right)^5=x^5\)
\(\Leftrightarrow2x-1=x\)
\(\Leftrightarrow x=1\)
a. ( 2x + 1 )3 = 27
<=> ( 2x + 1 )3 = 33
<=> 2x + 1 = 3
<=> 2x = 2
<=> x = 1
b. ( 2x - 1 )3 = 125
<=> ( 2x - 1 )3 = 53
<=> 2x - 1 = 5
<=> 2x = 6
<=> x = 3
c. ( x + 1 )4 = 2x4
<=> x + 1 = 2x
<=> x = 1
d. ( 2x - 1 )5 = x5
<=> 2x - 1 = x
<=> x = 1
Cho đa thức
P(x)= x mũ 2 + 2x mũ 2 +1 (1)
Thay P(-1) vào đa thức (1) , ta có :
P= \((-1)^2 +2.(-1) ^3\)
P= \(1+ (-2)\)
P= \(-1\)
Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :
\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)
\(P= \dfrac{1}{4} + \dfrac{1}{4}\)
\(P=\dfrac{1}{2}\)
Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)
Thay Q(-2) vào đa thức (2) , ta có :
Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)
\(Q = 16-32+8+8+1\)
\(Q= 1\)
Thay Q(1) vào đa thức (2) , ta có:
\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)
\(Q= 1+ 4+2-4+1\)
\(Q= 4\)
Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)
Giải:
1) \(9x^2-12xy+4y^2-3\)
\(=\left(3x-2y\right)^2-3\)
\(=\left(3x-2y-\sqrt{3}\right)\left(3x-2y+\sqrt{3}\right)\) (Bước này chắc không cần)
2) \(x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
\(=\left(x+2-\sqrt{3}\right)\left(x+2+\sqrt{3}\right)\)
(Bước này chắc không cần)
3) \(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\)
4) \(x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
5) \(x^2-x+\dfrac{1}{3}\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6) \(\dfrac{1}{4}x^2+x\)
\(=\left(\dfrac{1}{2}x\right)^2+x+1-1\)
\(=\left(\dfrac{1}{2}x+1\right)^2-1\)
7) \(3x^2+2x+1\)
\(=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
8) \(2x^2-2x+1\)
\(=x^2-2x+1+x^2\)
\(=\left(x-1\right)^2+x^2\)
9) \(10a^2+5b^2+12ab+4a-6b+15\)
\(=4a^2+6a^2+4b^2+b^2+12ab+4a-6b+15\)
\(=\left(6a^2+b^2+12ab\right)+4a+4a^2-6b+4b^2+15\)
\(=\left(6a+b\right)^2+4a\left(1+a\right)-2b\left(3+2b\right)+15\)
Giải:
1) \(9x^2-12xy+4y^2-3\)
\(=\left(9x^2-12xy+4y^2\right)-3\)
\(=\left(3x-2y\right)^2-3\)
2) \(x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
3) \(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\)
4) \(x^2+6x+15\)
\(=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
5) \(x^2-x+\dfrac{1}{3}\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)
6) \(\dfrac{1}{4}x^2+x\)
\(=x\left(\dfrac{1}{4}x+1\right)\)
7) \(3x^2+2x+1\)
\(=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
8) \(2x^2-2x+1\)
\(=x^2-2x+1+x^2\)
\(=\left(x-1\right)^2+x^2\)
9) \(10a^2+5b^2+12ab+4a-6b+15\)
\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)
\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)
\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)
Vậy ...
a. ( 2x + 1 )2 = 49
<=> ( 2x + 1 )2 = 72
<=> 2x + 1 = 7
<=> x = 3
b. ( 2x - 1 )4 = 81
<=> ( 2x - 1 )4 = 34
<=> 2x - 1 = 3
<=> x = 2
c. ( x + 1 )3 = 2x3
<=> x + 1 = 2x
<=> x = 1
d. ( 2x + 1 )3 = 3x3
<=> 2x + 1 = 3x
<=> x = 1
( 2x + 1 )2 = 49
<=> ( 2x + 1 )2 = ( ±7 )2
<=> \(\orbr{\begin{cases}2x+1=7\\2x+1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
( 2x - 1 )4 = 81
<=> ( 2x - 1 )4 = ( ±3 )4
<=> \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
( x + 1 )3 = ( 2x )3
<=> x + 1 = 2x
<=> x - 2x = -1
<=> -x = -1
<=> x = 1
( 2x + 1 )3 = ( 3x )3
<=> 2x + 1 = 3x
<=> 2x - 3x = -1
<=> -x = -1
<=> x = 1