cho đường thẳng \(d:3x+4y+5=0\) và \(\overrightarrow{v}\left(1;-3\right)\). Qua phép tịnh tiến T theo \(\overrightarrow{v}\) đường thẳng d biến thành đường thẳng d'. Tính khoảng cách giữa hai đường thẳng d và d'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=5\) (1)
Đường thẳng d nhận \(\left(3;-4\right)\) là 1 vtpt nên cũng nhận \(\overrightarrow{u}=\left(4;3\right)\) là 1 vtcp
\(sin\alpha=\dfrac{2}{\sqrt{5}}\Rightarrow cos\alpha=\sqrt{1-sin^2\alpha}=\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow\dfrac{\left|a.4+b.3\right|}{\sqrt{a^2+b^2}.\sqrt{4^2+3^2}}=\dfrac{1}{\sqrt{5}}\Leftrightarrow\left|4a+3b\right|=5\) (2)
Từ (1) và (2) ta được hệ: \(\left\{{}\begin{matrix}a^2+b^2=5\\\left|4a+3b\right|=5\end{matrix}\right.\)
Phá trị tuyệt đối, sử dụng phép thế để giải hệ ta được:
\(\left(a;b\right)=\left(-2;1\right);\left(\dfrac{2}{5};-\dfrac{11}{5}\right);\left(2;-1\right);\left(-\dfrac{2}{5};\dfrac{11}{5}\right)\)
Tổng cộng có 4 vecto \(\overrightarrow{v}\) thỏa mãn
Tới đây bạn tự làm nốt phần tìm ảnh của d nhé
Đường thẳng song song d nên nhận (3;-4) là 1 vtpt
Phương trình:
\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)
Không hiểu câu hỏi số 2 của em
Ở đây có 2 pt đường tròn khác nhau, vậy (C) là cái nào trong 2 cái trên? Hoặc đề yêu cầu tìm ảnh của cả 2 đường tròn?
Gọi M′ ( x′ ; y′ ) ∈ d' là ảnh của M( x , y ) ∈ d qua phép tịnh tiến theo vecto ⃗v (2;3)
\(\Rightarrow\left\{{}\begin{matrix}x'=x+2\\y'=y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-3\end{matrix}\right.\)
do M (x' ; y') \(\in\) d nên
\(3x-5y+3=0\)
\(\Rightarrow3\left(x'-2\right)-5\left(y'-3\right)+3=0\)
\(\Leftrightarrow3x'-5y'+12=0\left(d'\right)\)
vậy \(M'\left(x';y'\right)\in d':3x'-5y'+12=0\)
Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)
Do d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(4x+3y+c=0\)
d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|-8+6+c\right|}{\sqrt{4^2+3^2}}=3\Rightarrow\left|c-2\right|=15\Rightarrow\left[{}\begin{matrix}c=17\\c=-13\end{matrix}\right.\)
Có 2 đường thẳng d': \(\left[{}\begin{matrix}4x+3y+17=0\\4x+3y-13=0\end{matrix}\right.\)
Chọn \(A\left(0;\frac{1}{3}\right)\in d\)
Gọi A' là ảnh của A qua phép tịnh tiến T thì \(A'\left(a;2-a+\frac{1}{3}\right)\Rightarrow A'\left(a;\frac{7}{3}-a\right)\)
Do \(A'\in d'\Rightarrow\left[{}\begin{matrix}4a+3\left(\frac{7}{3}-a\right)+17=0\\4a+3\left(\frac{7}{3}-a\right)-13=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-24\\a=-6\end{matrix}\right.\)
Lấy điểm M bao nhiêu cũng được nhưng với điều kiện thay vào pt d phải thỏa mãn
Ví dụ bài này lấy M(0;1) thay vào d: 3.0+5.1+3=0 (sai)
Nên lấy như vậy giải kết quả cũng sẽ sai
Chắc pt d là \(3x+5y+3=0\) ?
Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=2\) (1)
Gọi \(M\left(-1;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=-1+a\\y_{M'}=b\end{matrix}\right.\) thay vào pt (d') ta được:
\(3\left(-1+a\right)+5b-5=0\)
\(\Leftrightarrow b=\frac{8-3a}{5}\)
Thế vào (1): \(a^2+\left(\frac{8-3a}{5}\right)^2=2\)
\(\Leftrightarrow34a^2-48a+14=0\Rightarrow\left[{}\begin{matrix}a=1\Rightarrow b=1\\a=\frac{7}{17}\Rightarrow b=\frac{23}{17}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}\overrightarrow{v}=\left(1;1\right)\\\overrightarrow{v}=\left(\frac{7}{17};\frac{23}{17}\right)\end{matrix}\right.\)
Đề bài thiếu, có vô số cách tịnh tiến để biến 1 đường thẳng này thành đường thẳng khác
Cần thêm 1 dữ liệu nữa để tính được vecto v, ví dụ độ dài của nó hay nó vuông góc, song song với đường nào
Đúng rồi bạn ạ. Có vô số cách tịnh tiến nên bài này mới là bạn luận giải thích ấy ạ
Gọi M là giao điểm của \(d_1\) và \(d_2\Rightarrow\) toạ độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-2y+5=0\\2x+4y-7=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{8};\frac{31}{16}\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x+\frac{3}{8}\right)+4\left(y-\frac{31}{16}\right)=0\Leftrightarrow24x+32y-53=0\)
d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(3x+4y+c=0\)
Gọi \(A\left(0;-\frac{5}{4}\right)\) là 1 điểm thuộc d, A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)
Ta có \(A'\left(1;-\frac{17}{4}\right)\) mà A' thuộc d'
\(\Rightarrow3.1+4.\left(-\frac{17}{4}\right)+c=0\Rightarrow c=14\)
Phương trình d': \(3x+4y+14=0\)
\(d\left(d;d'\right)=d\left(A;d'\right)=\frac{\left|0+4\left(-\frac{17}{4}\right)+14\right|}{\sqrt{3^2+4^2}}=\frac{3}{5}\)
thanks bn nhiu nhesss!!!!