giải các bất pt sau
\(\frac{X+2}{5}< \frac{X+2}{3}+\frac{1}{2}\)
\(\frac{X+2}{4}-X< \frac{1}{3}\)
\(\frac{2X-1}{X+2}< 0\)
GIẢI GIÚP MÌNH LUÔN NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
a) \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)
<=> \(\frac{x}{4}+\frac{5}{4}-\frac{2x}{3}+1=\frac{6x}{8}-\frac{1}{8}+\frac{2x}{12}-\frac{1}{12}\)
<=> \(-\frac{4}{3}x=-\frac{59}{24}\)
<=> \(x=\frac{59}{32}\)
Vậy S = { 59/32}
b) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}-\frac{-x^2-2x+8}{4}=\frac{x^2+8x-20}{3}\)
<=> \(\left(\frac{x^2}{12}+\frac{x^2}{4}-\frac{x^2}{3}\right)+\left(\frac{14}{12}x+\frac{2}{4}x-\frac{8}{3}x\right)=-\frac{20}{8}+\frac{8}{4}-\frac{40}{12}\)
<=> \(-x=-8\)
<=> x = 8
Vậy S = { 8 }
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)
a.2x#+_2 . quy đồng khử mẫu tchung : (x+2)(x+1)+(x-1)(x-2)--->2x^2 + 4=2(x^2+2). --> s={x thuộc R/ X#+_2}
a) ĐKXĐ \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-2x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2-2x^2-4=0\)
\(\Leftrightarrow0x=0\)(vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
b) ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\Rightarrow\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}=\frac{1}{2x\left(x-2\right)}-\frac{7}{8x}\)
\(\Rightarrow2\left(5-x\right)-x-4\left(x-1\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow10-2x-x-4x+4+7x-14=0\)
\(\Leftrightarrow0x=0\)(phương trìh vô số nghiệm)
nghiệm x thỏa mãn phương trình S \(\in\)R với \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
\(a)\) \(3-2x>4x+5\)
\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)
\(\Leftrightarrow\)\(6x+5< 3\)
\(\Leftrightarrow\)\(6x+5-5< 3-5\)
\(\Leftrightarrow\)\(6x< -2\)
\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)
\(\Leftrightarrow\)\(x< \frac{-1}{3}\)
Vậy \(x< \frac{-1}{3}\)
Chúc bạn học tốt ~
\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)
\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)
\(\Leftrightarrow6x+12< 10x+20+15\)
\(\Leftrightarrow6x-10x< 20+15-12\)
\(\Leftrightarrow-4x< 23\)
\(\Leftrightarrow x>-\frac{23}{4}\)
Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)
\(\frac{x+2}{4}-x< \frac{1}{3}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow3x+6-12x< 4\)
\(\Leftrightarrow3x-12x< 4-6\)
\(\Leftrightarrow-9x< -2\)
\(\Leftrightarrow x>\frac{2}{9}\)
Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)
\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))
Xét hai trường hợp
1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)
2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)