x=\(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)
tính x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/7291365157.html
tham khảo! bài này mk làm ở đó hơi thieuus bạn chỉ cần + ... là đc
\(x=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
\(\Rightarrow x^3=5+2\sqrt{13}+5-2\sqrt{13}+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}.x\)
\(=10+3x\sqrt[3]{25-52}\)
\(=10+3x\sqrt[3]{-27}\)
\(=10-9x\)
\(\Rightarrow x^3+9x-10=0\)
\(\Leftrightarrow x^3-x+10x-10=0\)
\(\Leftrightarrow x\left(x^2-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+10\right)=0\)
Vì \(x^2+x+10=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}>0\forall x\)
=> x - 1 = 0
=> x = 1
Thay vào A = 12015 - 12016 = 0
Vậy A = 0
\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(\Leftrightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(\Leftrightarrow\left(x^2-5\right)^2=13+x\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+3\right)\left(x+1\right)\left(x-1\right)-1\right]=0\)
do x>2 nen x=3
dk \(x>2\)
Xét \(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}}\)
\(\left(x^2-5\right)^2=13+x\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x^4-9x^2\right)-\left(x^2-9\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+3\right)\left(x+1\right)\left(x-1\right)-1\right]=0\)
tiếp : vì \(x>2\Rightarrow\left(x+3\right)\left(x+1\right)\left(x-1\right)-1>0\)
do đó \(x-3=0\Leftrightarrow x=3\)
\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+....}}}}}\)
\(\Rightarrow x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}}\)
\(\Rightarrow x^4=25+10\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+....}}}}+13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}\)
\(\Leftrightarrow x^4=38+10x^2+x\)
\(\Leftrightarrow x^4-10x^2-x-38=0\)
giải ra tìm x xong
x= \(\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{16}}}}=\)
= \(\sqrt{5+\sqrt{13+\sqrt{5+4}}}=\sqrt{5+\sqrt{13+\sqrt{9}}}=\)\(\sqrt{5+\sqrt{13+3}}\)
= \(\sqrt{5+\sqrt{16}}=\sqrt{5+4}=\sqrt{9}=3\)
Dễ dàng nhận thấy \(x>0\)
a/ \(x^2=6+\sqrt{6+\sqrt{6+...}}\)
\(\Leftrightarrow x^2=6+x\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=3\)
b/ \(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(\Leftrightarrow x^2=5+\sqrt{13+x}\)
\(\Leftrightarrow x^2-5=\sqrt{x+13}\) (\(x\ge\sqrt{5}\))
\(\Leftrightarrow\left(x^2-5\right)^2=x+13\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)
Do \(x\ge\sqrt{5}\Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x^3-x=x^2\left(x-1\right)>0\\x^2\ge5\Rightarrow3x^2-4>0\end{matrix}\right.\)
\(\Rightarrow x^3+3x^2-x-4>0\)
\(\Rightarrow x=3\)
\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13...}}}}\)
\(\Rightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13...}}}\)
\(\Rightarrow x^4-10x^2+25-13=x\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+3\right)\left(x+1\right)\left(x-1\right)-1\right]=0\)
Dễ thấy \(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13...}}}}>\sqrt{4}=2\)nên \(\left(x+3\right)\left(x+1\right)\left(x-1\right)-1>5\cdot3\cdot1-1=14>0\)nên x = 3