K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Xét \(\Delta ABC\)

 AM là đường trung tuyến ( M là trung điểm của BC )

AM là đường phân giác ( AM là tia phân giác của \(\widehat{BAC}\))

  Nên \(\Delta ABC\)cân tại A ( tam giác có đường trung tuyến đồng thời là đường phân giác )

18 tháng 8 2020

Vì M là trung điểm của BC 

=> AM là đường trung tuyến của BC

ta có AM là đường trung tuyến vừa là tia phân giác 

=> Tam giác ABC cân tại A

18 tháng 1 2022

Tham khảo:

Xét tam giác `ABM` và tam giác `AMC`, ta có :

AM cạnh huyền chung

\(\widehat{AMB}=\widehat{AMC}=90^o\)(góc vuông )

\(\widehat{BAM}=\widehat{MAC}\)(giả thiết)

Do đó tam giác `ABM`=tam giác `AMC`(cạnh huyền-cạnh góc vuông)

\(=>AB=AC\)(hai cạnh tương ứng)

=>tam giác `ABC` cân tại `A.` 

27 tháng 7 2021

Bài làm hoàn chỉnh đây nhé bn

undefined

27 tháng 7 2021

Xem lại đề câu c nhé bn

undefined

17 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\\ b,\Delta BAM=\Delta CAM\\ \Rightarrow MB=MC\\ \Rightarrow M\text{ là trung điểm }BC\\ c,\Delta BAM=\Delta CAM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)

1 tháng 8 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Xét hai tam giác vuông AHM và AKM, ta có:

∠(AHM) =∠(AKM) = 90o

Cạnh huyền AM chung

∠(HAM) = ∠KAM) (gt)

⇒ ΔAHM = ΔAKM (cạnh huyền, góc nhọn)

Suy ra: MH = MK (hai cạnh tương ứng)

Xét hai tam giác vuông MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 90o

MB = MC ( vì M là trung điểm BC).

MH = MK (chứng minh trên)

⇒ ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.