K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Bài 1:

a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)

b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)

c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)

16 tháng 8 2020

Bài 2:

Theo giả thiết ta có thể suy ra: \(x>y\)

Ta có: \(2^x-2^y=224\)

\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)

Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên

=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)

19 tháng 5 2018

Gợi ý: Các biểu thức mũ chẵn đều không âm.

\(a^{2n}+b^{2n}\le0\Leftrightarrow a^{2n}+b^{2n}=0\Leftrightarrow a=b=0\)

19 tháng 5 2018

a,\(\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\)< \(0\)

Vì \(\left(x-\frac{2}{5}\right)^{2010}\);\(\left(y+\frac{3}{7}\right)^{468}\)đều > \(0\)

=> \(\left(x-\frac{2}{5}\right)^{2010}=0\)

     \(\left(y+\frac{3}{7}\right)^{468}=0\)

=> \(\left(x-\frac{2}{5}\right)^{2010}=0^{2010}\)

     \(\left(y+\frac{3}{7}\right)^{468}=0^{468}\)

=> \(x-\frac{2}{5}=0\)

      \(y-\frac{3}{7}=0\)

=> \(x=\frac{2}{5}\)

      \(y=\frac{3}{7}\)

Vậy \(x=\frac{2}{5}\)\(y=\frac{3}{7}\)

7 tháng 8 2018

a, \(\frac{\left(2^3.5.7\right)\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)\(=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=10\)

b, \(\frac{4}{77}+\frac{4}{165}+\frac{4}{285}\)

\(=\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}\)

\(=\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}\)

\(=\frac{1}{7}-\frac{1}{19}\)

\(=\frac{19}{133}-\frac{7}{133}=\frac{12}{133}\)

7 tháng 8 2018

Bài 2:

\(a,\left(x+\frac{2}{3}\right).\frac{-3}{5}+\frac{4}{7}=1\frac{4}{7}.x\)

\(\Rightarrow\frac{-3}{5}x+\frac{-2}{5}+\frac{4}{7}=\frac{11}{7}.y\)

\(\Rightarrow\frac{-3}{5}x+\frac{6}{35}=\frac{11}{7}.y\)

Từ đây làm nốt

b, \(\left|5x-2\right|\le0\)

\(\Rightarrow\left|5x\right|\le2\)( x \(\ge0\))

Mà không có số x nào nhân với 5 bé hơn hoặc bằng 2

\(\Rightarrow\)x không có giá trị thỏa mãn

c đề bài sai, chỉ tìm x chứ làm gì có y

d, \(\left(x-3\right).\left(2y+1\right)=7\)

TH1:

x - 3 = 1

x = 1 + 3

x = 4

2y + 1 = 7

2y = 7 - 1 = 6

y = 6 : 2 = 3

TH2:

x - 3 = 7

x = 7 + 3 = 10

2y + 1 = 1

2y = 1 - 1 = 0

y = 0 : 2 = 0

TH3:

x - 3 = -1

x = -1 + 3

x = 2

2y+ 1 = -7

2y = -7 - 1 = -8

y = (-8) : 2 = -4

TH4:

x - 3 = -7

x = -7 + 3

x = -4

2y + 1 = -1

2y = (-1) - 1

2y = -2

y = (-2) : 2 = -1

Vậy ......

5 tháng 9 2020

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

5 tháng 9 2020

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

15 tháng 9 2021

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Ta có: \(\left|x+\frac{9}{2}\right|\ge0\)

            \(\left|y+\frac{4}{3}\right|\ge0\)

           \(\left|z+\frac{7}{2}\right|\ge0\)

Mà \(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)

\(\Rightarrow\hept{\begin{cases}x+\frac{9}{2}=0\\y+\frac{4}{3}=0\\z+\frac{7}{2}=0\end{cases}}\)                        \(\Rightarrow\hept{\begin{cases}x=\frac{-9}{2}\\y=\frac{-4}{3}\\z=-\frac{7}{2}\end{cases}}\)

Vậy....................

7 tháng 1 2020

Ta có:\(\hept{\begin{cases}\left|x+\frac{9}{2}\right|\ge0\forall x\\\left|y+\frac{4}{3}\right|\ge0\forall y\\\left|z+\frac{7}{2}\right|\ge0\forall z\end{cases}}\)

\(\Rightarrow\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\forall x,y,z\)

Dấu "="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}x+\frac{9}{2}=0\\y+\frac{4}{3}=0\\z+\frac{7}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-9}{2}\\y=\frac{-4}{3}\\z=\frac{-7}{2}\end{cases}}\)

Vậy.... thỏa mãn đề bài 

10 tháng 1 2016

bài 1

[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]

=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0

=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0

Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0

=>x+2=0

=>x=-2

 

10 tháng 1 2016

Bài 1: x=-2

Bài 2:x=17

Bài 3:x=2014

y=2010