Cho A= 1/ 1+2+3 + 1/1+2+3+4 + .....+ 1/1+2+3+4+...+19 Cần gấp ai làm xong và đúng nhất mình sẽ Tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: Số các số hạng của tổng A ( trừ số 19/1 ) là: ( 18 - 1 ) : 1 + 1 = 18 ( số hạng )
Khi đó:
\(A=\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{17}{3}+\frac{18}{2}+\frac{19}{1}\)
\(A=1+\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+\left(\frac{3}{17}+1\right)+...+\left(\frac{17}{3}+1\right)+\left(\frac{18}{2}+1\right)\)
\(A=\frac{20}{20}+\frac{20}{19}+\frac{20}{18}+\frac{20}{17}+...+\frac{20}{3}+\frac{20}{2}\)
\(A=20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)\)
Khi đó:
\(\frac{A}{B}=\frac{20\cdot\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+\frac{1}{17}+...+\frac{1}{3}+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}=20\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{200}+\frac{1}{200}-\frac{1}{400}\)
\(A=1-\frac{1}{400}\)
\(A=\frac{399}{400}\)
từ đề suy ra 7x-7+3x-6=-3
suy ra 10x-13+3=0
suy ra 10x-10=0
suy ra 10x=10
suy ra x=1
\(\frac{1}{2}+\frac{1}{5}+\frac{2}{9}\)
=\(\frac{45}{90}+\frac{18}{90}+\frac{20}{90}\)
=\(\frac{83}{90}\)
\(A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{19.20}{2}}\)
=> \(A=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{20}\)
=> \(\frac{A}{2}=\frac{20-3}{20.3}\)
=> \(\frac{A}{2}=\frac{17}{60}\)
=> \(A=\frac{17}{30}\)
VẬY \(A=\frac{17}{30}\)
Ta có :\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+19}\)
\(=\frac{1}{3\times4}\times2+\frac{1}{4\times5}\times2+...+\frac{1}{19\times20}\times2\)
\(=2\times\left(\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\right)=2\times\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{20}\right)=2\times\frac{17}{60}=\frac{17}{30}\)