K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Chứng minh rằng với mọi số tự nhiên n; ta có :
A = 2 * n + 11111....1 chia hết cho 3

                 ( n chữ số 1 )

             Giải:

Nếu n chia hết cho 3 thì tổng các chữ số của 11111...1 ( n chữ số 1 ) chia hết cho 3 và 2 * n chia hết cho 3 nên A chia hết cho 3.

Nếu n chia 3 dư 1 thì 2 * n chia 3 dư 2 ( (1 + 1) mod 3 ), mà tổng các chữ số của 11111...1 ( n chữ số 1 ) khi đó dư 1 khiến A chia hết cho 3 ( (2 + 1) mod 3 )

Nếu n chia 3 dư 2 thì 2 * n lại dư 1 ( (2 + 2) mod 3 ), mà tổng các chữ số của 11111...1 ( n chữ số 1 ) lại dư 1 khiến a chia hết cho 3 ( (1 + 2) mod 3 )

Vậy bất kể n là số tự nhiên nào, thì A luôn chia hết cho 3 (đpcm)

15 tháng 8 2020

+ Với n=1 thì A=2x1+1=3 chia hết cho 3

+ Với n=2 thì A=2x2+11=15 chia hết cho 3

+ Với n=3 thì A=2x3+111=117 chia hết cho 3

+ Với n>3 thì

# Nếu n chia hết cho 3 thì 2n chia hết cho 3 và tổng các chữ số của 111..11 là n cũng chia hết cho 3 nên A chia hết cho 3

# Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => 2x(n-1)=2xn-2 chia hết cho 3

=> A=2xn-2+11111....11+2 (n chữ số 1) khi đó 111...11+2 = 1111..13 (n-1 chữ số 1) => tổng các chữ số của số 111...13 là

(n-1)x1+3=n+2 mà n chia 3 dư 1 nên n+2 chia hết cho 3 => 1111..13 chia hết cho 3 nên A chia hết cho 3

# Nếu n chia 3 dư 2 thì n-2 chia hết cho 3 => 2x(n-2)=2xn-4 chia hết cho 3

=> A=2xn-4+11111..11+4 (n chữ số 1) khi đó 1111..11+4=1111..15 (n-1 chữ số 1) => tổng các chữ số của số 111..15 là

(n-1)x1+5=n+4 do n chia 3 dư 2 nên n+4 chia hết cho 3 => 1111..15 chia hết cho 3 nên A chia hết cho 3

Vậy Với mọi số TN n ta đều có 2xn+1111..111 (n chữ số 1) đều chia hết cho 3

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

22 tháng 10 2021

Bài 5: 

Ta có: \(3n+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

22 tháng 10 2021

cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.

 

15 tháng 11 2020

bài1

vì 148 chia ht cho 7 và 111 chia ko chia ht cho 7 => a ko chia ht cho 7

17 tháng 12 2021

bài 1 :

ta có : a= 148 . q + 111

           a= 37.4.q+(37.3)

           a = 37 . ( 4.q + 3 ) chia hết cho 37

vậy a chia hết cho 37

 

            

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

22 tháng 10 2017

câu c là +n nha