Giải pt
\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{1}{3}\)
\(\Leftrightarrow x^2+11x-3+2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=4x^2+13x+3\)
\(\Leftrightarrow2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=3x^2+2x+6\)
\(\Leftrightarrow2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}=3x^2+2x+6\)
\(\Leftrightarrow\left(3x^2-x\right)-2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}+3x+6=0\)
\(\Leftrightarrow\left(\sqrt{3x^2-x}-\sqrt{3x+6}\right)^2=0\)
\(\Leftrightarrow3x^2-x=3x+6\)
\(\Leftrightarrow3x^2-4x-6=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{22}}{3}\\x=\dfrac{2-\sqrt{22}}{3}\left(loại\right)\end{matrix}\right.\)
Giải PT
a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)
\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)
\(\Leftrightarrow\) \(12\sqrt{x} = 3\)
\(\Leftrightarrow\) \(\sqrt{x} = 4 \)
\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)
\(\Leftrightarrow\) \(x=16\)
b) \(\sqrt{x^2-2x-1} - 3 =0\)
\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)
\(\Leftrightarrow\) \(|x-1|=3\)
* \(x-1=3\)
\(\Leftrightarrow\) \(x=4\)
* \(-x-1=3\)
\(\Leftrightarrow\) \(-x=4\)
\(\Leftrightarrow\) \(x=-4\)
c) \(\sqrt{4x^2+4x+1} - x = 3\)
<=> \(\sqrt{(2x+1)^2} = 3+x\)
<=> \(|2x+1|=3+x\)
* \(2x+1=3+x\)
<=> \(2x-x=3-1\)
<=> \(x=2\)
* \(-2x+1=3+x\)
<=> \(-2x-x = 3-1\)
<=> \(-3x=2\)
<=> \(x=\dfrac{-2}{3}\)
d) \(\sqrt{x-1} = x-3\)
<=> \(\sqrt{(x-1)^2} = (x-3)^2\)
<=> \(|x-1| = x^2-2.x.3+3^2\)
<=> \(|x-1| = x-6x+9\)
<=> \(|x-1| = -5x+9\)
* \(x-1= -5x+9\)
<=> \(x+5x = 9+1\)
<=> \(6x=10\)
<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)
* \(-x-1 = -5x+9\)
<=> \(-x+5x = 9+1\)
<=> \(4x = 10\)
<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)
ĐKXĐ: \(x\ge-\frac{1}{4}\)
Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t>0\)
\(\Rightarrow t^2+3=8x+12+4\sqrt{4x^2+9x+2}\)
\(\Rightarrow2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\) (1)
Pt trở thành:
\(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)
Thay vào (1)
\(\Rightarrow\left[{}\begin{matrix}2x+3+\sqrt{4x^2+9x+2}=1\left(2\right)\\2x+3+\sqrt{4x^2+9x+2}=3\left(3\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+2+\sqrt{4x^2+9x+2}=0\)
Do \(x\ge-\frac{1}{4}\Rightarrow VT\ge2.\left(-\frac{1}{4}\right)+2>0\) nên (1) vô nghiệm
Xét (2): \(\Leftrightarrow\sqrt{4x^2+9x+2}=-2x\) (\(x\le0\))
\(\Leftrightarrow4x^2+9x+2=4x^2\)
\(\Rightarrow x=-\frac{2}{9}\) (thỏa mãn)