Cho a,b,c dương và \(a+b+c=1\)
CM: \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng full :)
\(\frac{1}{a\left(1+b\right)}+\frac{1}{b\left(1+c\right)}+\frac{1}{c\left(1+a\right)}\ge\frac{3}{1+abc}\)
\(\Leftrightarrow\frac{1+abc}{a\left(1+b\right)}+\frac{1+abc}{b\left(1+c\right)}+\frac{1+abc}{c\left(1+a\right)}\ge3\)
\(\Leftrightarrow\left[\frac{1+abc}{a\left(1+b\right)}+1\right]+\left[\frac{1+abc}{b\left(1+c\right)}+1\right]+\left[\frac{1+abc}{c\left(1+a\right)}+1\right]\ge6\)
\(\Leftrightarrow\frac{1+abc+ab+a}{a\left(1+b\right)}+\frac{1+abc+bc+b}{b\left(1+c\right)}+\frac{1+abc+c+ac}{c\left(1+a\right)}\ge6\)
\(\Leftrightarrow\frac{ab\left(c+1\right)+\left(a+1\right)}{a\left(1+b\right)}+\frac{bc\left(a+1\right)+\left(b+1\right)}{b\left(1+c\right)}+\frac{ac\left(b+1\right)+\left(c+1\right)}{c\left(1+a\right)}\ge6\)
\(\Leftrightarrow\frac{b\left(c+1\right)}{1+b}+\frac{a+1}{a\left(1+b\right)}+\frac{c\left(a+1\right)}{1+c}+\frac{b+1}{b\left(1+c\right)}+\frac{a\left(b+1\right)}{1+a}+\frac{c+1}{c\left(1+a\right)}\ge6\)
Ta có vế trái tương đương với:
\(\left[\frac{b\left(c+1\right)}{1+b}+\frac{b+1}{b\left(c+1\right)}\right]+\left[\frac{a\left(b+1\right)}{1+a}+\frac{1+a}{a\left(b+1\right)}\right]+\left[\frac{c\left(a+1\right)}{1+c}+\frac{1+c}{c\left(a+1\right)}\right]\)
\(\ge2+2+2=6\)
=> đpcm
\(VT=\left(a+\frac{1}{9b}+\frac{1}{9b}+...+\frac{1}{9b}\right)\left(b+\frac{1}{9c}+\frac{1}{9c}+...+\frac{1}{9c}\right)\left(c+\frac{1}{9a}+\frac{1}{9a}+...+\frac{1}{9a}\right)\)
Lưu ý: Đã tách các số \(\frac{1}{b};\frac{1}{c};\frac{1}{a}\)trong ngoặc thành 9 số hạng bằng nhau
Áp dụng AM-GM:
\(VT\ge10\sqrt[10]{a\left(\frac{1}{9b}\right)^9}.10\sqrt[10]{b\left(\frac{1}{9c}\right)^9}.10\sqrt[10]{c\left(\frac{1}{9a}\right)^9}\)
\(=10^3\sqrt[10]{abc\left(\frac{1}{9a}.\frac{1}{9b}.\frac{1}{9c}\right)^9}\)\(=10^3\sqrt[10]{\frac{abc}{\left(9^3\right)^9.\left(abc\right)^9}}\)\(=10^3\sqrt[10]{\frac{1}{9^{27}.a^8b^8c^8}}\)
\(=\frac{10^3}{\sqrt[10]{9^{27}.a^8b^8c^8}}\)\(=\frac{10^3}{\sqrt[10]{9^{15}.\left(3a\right)^8\left(3b\right)^8\left(3c\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(3a.3b.3c\right)^8}}\)
\(\ge\frac{10^3}{3^3\sqrt[10]{\left(\frac{3a+3b+3c}{3}\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(\frac{3\left(a+b+c\right)}{3}\right)^8}}=\frac{10^3}{3^3}\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
\(A=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow1\ge3\sqrt[3]{abc}\Leftrightarrow abc\le\frac{1}{27}\Leftrightarrow\frac{1}{abc}\ge27\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
BĐT Cauchy cho 2 số dương: \(abc+\frac{1}{729abc}\ge2\sqrt{abc.\frac{1}{27^2abc}}=\frac{2}{27}\)
Biến đổi A thêm 1 tí nữa: \(A=\left(abc+\frac{1}{729abc}\right)+\frac{728}{729}.\frac{1}{abc}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+1\)
Thế toàn bộ các BĐT vừa tìm được ở trên vào A:
\(A\ge\frac{2}{27}+\frac{728}{729}.27+9+1=\frac{1000}{27}=\left(\frac{10}{3}\right)^2\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Lời giải
Ta có: \(\left(a+b+\frac{1}{4}\right)^2=\frac{1}{16}\left(4a+4b-1\right)^2+\left(a+b\right)\ge a+b\)
Tương tự: \(\left(b+c+\frac{1}{4}\right)^2\ge b+c;\left(c+a+\frac{1}{4}\right)^2\ge c+a\)
Như vậy: \(L.H.S\left(VT\right)\ge\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=\left(\frac{1}{\frac{1}{a}}+\frac{1}{\frac{1}{b}}\right)+\left(\frac{1}{\frac{1}{b}}+\frac{1}{\frac{1}{c}}\right)+\left(\frac{1}{\frac{1}{c}}+\frac{1}{\frac{1}{a}}\right)\)
\(\ge4\left(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\right)=R.H.S\left(VP\right)\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{8}\). Ta có đpcm.
khác cách tth xíu
Ta có:
\(VP=\Sigma_{cyc}\frac{4}{\frac{1}{a}+\frac{1}{b}}\le\Sigma_{cyc}\frac{4}{\frac{4}{a+b}}=2\left(a+b+c\right)\)
Gio ta di chung minh
\(VT\ge2\left(a+b+c\right)\)
Ta lai co:
\(VT=\Sigma_{cyc}\left(a+b+\frac{1}{4}\right)^2\ge\frac{\left[2\left(a+b+c\right)+\frac{3}{4}\right]^2}{3}\)
Chung minh
\(\frac{\left[2\left(a+b+c\right)+\frac{3}{4}\right]^2}{3}\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\left[2\left(a+b+c\right)-\frac{3}{4}\right]^2\ge0\) (đúng)
Dau '=' xay ra khi \(a=b=c=\frac{1}{8}\)
Thay \(1=a+b+c\) vào vế phải của BĐT
=> BĐT cần CM trở thành:
<=> \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{2a+b+c}{b+c}+\frac{2b+c+a}{c+a}+\frac{2c+a+b}{a+b}\)
<=> \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}+3\)
<=> \(2\left(\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{c+a}+\frac{c}{a}-\frac{c}{a+b}\right)\ge3\)
<=> \(\frac{ac}{b\left(b+c\right)}+\frac{ab}{c\left(c+a\right)}+\frac{bc}{a\left(a+b\right)}\ge\frac{3}{2}\)
<=> \(\frac{a^2b^2}{abc\left(c+a\right)}+\frac{b^2c^2}{abc\left(a+b\right)}+\frac{c^2a^2}{abc\left(b+c\right)}\ge\frac{3}{2}\) (1)
Có: \(VT\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+b+c+c+a\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\frac{3}{2}\) (2)
(TA ĐÃ ÁP DỤNG BĐT CAUCHY - SCHWARZ)
TỪ (1) VÀ (2) => TA CÓ ĐPCM