tìm hằng số a,b,c sao cho
f(x)=ax^3+bx^2+c chia hết cho (x+2)chia cho x^2-1 dư x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left(ax^3+bx^2+c\right)⋮\left(x+2\right)\Rightarrow ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)(*)
Thay x = - 2 vào (*) ta được :\(-8a+4b+c=0\)(1)
Do \(\left(ax^3+bx^2+c\right):\left(x^2-1\right)\text{dư}\text{ }x+5\) \(\Rightarrow\left(ax^{\:3}+bx^2+c-x-5\right)⋮\left(x^2-1\right)\left[\text{ }\right]\)
\(\Rightarrow ax^3+bx^2-x+c-5=\left(x^2-1\right)G\left(x\right)\)(**)
Thay x = 1 vào (**) ta đc \(a+b+c-6=0\Rightarrow a+b+c=6\)(2)
Thay \(x=-1\) vào (**) ta đc \(-a+b-c-4=0\Leftrightarrow-a+b-c=4\)(3)
Từ (1);(2);(3) ta có phương trình : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b-c=4\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{7}{3}\\b=5\\c=-\frac{4}{3}\end{cases}}}\)
\(a) x^4 + ax^2 + b \\
= x^4 + 2x^2 + b + ax^2 - 2x^2\\
= (x^2 + 1)^2 - x^2 + x^2(a + b)\\
= (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\
= (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1).
\)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0
\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\
\Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\
= (x^2 + 3x - 10)(cx + d) \\
= ax^3 + bx^2 + 5x - 50\\
= cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)
\(b = d + 3c\\
5 = 3d - 10c\\
-50 = -10d\)
Vậy \(a = 1, b = 8\)
\(d)f(x)=ax^3+bx-24\)
Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)
f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)
Giải ra ta được a = 2; b = -26
Gọi thương của đa thức f(x) và x+2 là P(x),thương của đa thức f(x) và x^2-1 là Q(x)
Theo đề ra,ta có:\(\left\{{}\begin{matrix}f\left(x\right)=\left(x+2\right).P\left(x\right)\\f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+\left(x+5\right)\end{matrix}\right.\)
Ta thấy 2 đẳng thức trên thỏa mãn với mọi x thuôc R nên ta có
Nếu x=-2 thì \(f\left(-2\right)=\left(-2+2\right).P\left(-2\right)=0\)
\(\Rightarrow-8a+4b+c=0\left(1\right)\)
Nếu x=1 thì \(f\left(1\right)=\left(1^2-1\right).Q\left(1\right)+\left(1+5\right)=6\Rightarrow a+b+c=6\left(2\right)\)
Nếu x=-1 thì \(f\left(-1\right)=\left[\left(-1\right)^2-1\right].Q\left(-1\right)+\left(-1+5\right)=4\Rightarrow-a+b+c=4\left(3\right)\)
Lấy (2) trừ (3)
\(\Rightarrow2a=2\Rightarrow a=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=5\\4b+c=8\end{matrix}\right.\)
\(\Rightarrow\left(4b+c\right)-\left(b+c\right)=8-5\Rightarrow3b=3\Rightarrow b=1\Rightarrow c=4\)
Vậy a=b=1;c=4