giải phương trình nghiệm nguyên sau:
\(15x^2-7y^2=9\)
\(8x^3=3^y+997\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Ta có \(3x^2+7y^2=210\Rightarrow7y^2=210-3x^2\le210\)
=> \(y^2\le30\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)(vì \(y\in Z\)) (1)
Lại có \(7y^2=210-3x^2=3\left(70-x^2\right)⋮3\)
=> \(y⋮3\left(\text{vì(7;3) = 1}\right)\)(2)
Từ (1) (2) => y = \(\pm3\) => x = \(\pm\)7
Vậy các cặp (x;y) thỏa là (7;3) ; (7;-3) ; (-7; -3) ; (-7 ; 3)
giúp mình vs, mình cần trước thứ 6 nhé, mik cảm ơn nhiều
tôi bt lm con phía dưới thôi