K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

anh là giởi nhất bảng sếp hạng mà còn ko làm được thì ai làm được

8 tháng 8 2020

Mk mà giỏi thì các bn thành god hết rồi ạ :(

2 tháng 8 2020

Cho a = b = c = 1 vào thì đề sai

2 tháng 8 2020

Để ý phần mẫu \(2bc\le b^2+c^2\)

chắc hướng làm là như vậy @@

3 tháng 11 2018

Cái thứ 2 là b. (a^2+c^2) đúng ko bạn

3 tháng 11 2018

đúng rồi nha

29 tháng 7 2020

dễ mà ? 

Theo BĐT Cauchy cho 2 số ta có :

\(b^2+c^2\ge2bc< =>\frac{a^2}{b^2+c^2}\le\frac{a^3}{2abc}\)

Tương tự ta được :\(\frac{b^2}{c^2+a^2}\le\frac{b^3}{2abc}\) ; \(\frac{c^2}{a^2+b^2}\le\frac{c^3}{2abc}\)

Cộng theo vế các bất đẳng thức cùng chiều :

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh