K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Bài 5: 

Xét ΔEBC có 

M là trung điểm của BC

I là trung điểm của EC

Do đó: MI là đường trung bình của ΔBEC

Suy ra: MI//DE

Xét ΔAMI có 

D là trung điểm của AM

DE//MI

Do đó: E là trung điểm của AI

Suy ra: AE=EI

mà EI=IC

nên AE=EI=IC

Bài 4: 

a: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm củaBC

MF//AB

Do đó: F là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình của ΔBAC

b: Ta có: \(AE=EB=\dfrac{AB}{2}\)

\(AF=FC=\dfrac{AC}{2}\)

mà AB=AC

nên AE=EB=AF=FC

Xét ΔEBM và ΔFCM có 

EB=FC

\(\widehat{B}=\widehat{C}\)

MB=MC

Do đó: ΔEBM=ΔFCM

Suy ra: ME=MF

Ta có: AE=AF

nên A nằm trên đường trung trực của EF(1)

Ta có: ME=MF

nên M nằm trên đường trung trực của EF(2)

từ (1) và (2) suy ra AM là đường trung trực của EF

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình của ΔBAC

b: Ta có: \(AE=EB=\dfrac{AB}{2}\)

\(AF=FC=\dfrac{AC}{2}\)

mà AB=AC

nên AE=AF=EB=FC

Xét ΔEBM và ΔFCM có 

EB=FC

\(\widehat{B}=\widehat{C}\)

MB=MC

Do đó: ΔEBM=ΔFCM

Suy ra: ME=MF

Ta có: AE=AF

nên A nằm trên đường trung trực của FE(1)

Ta có: ME=MF

nên M nằm trên đường trung trực của FE(2)

từ (1) và (2) suy ra AM là đường trung trực của EF

Bài 2: 

Xét ΔBEC có 

M là trung điểm của BC

I là trung điểm của EC

Do đó: MI là đường trung bình của ΔBEC

Suy ra: MI//BE

hay MI//DE

Xét ΔAMI có 

D là trung điểm của AM

DE//MI

Do đó: E là trung điểm của AI

Suy ra: AE=EI

mà EI=IC

nên AE=IE=IC

B1:

a) xét 2 tam giác vuông ABH và ACK có:

             góc BAC chung

          AB = AC (gt)

         góc ABH = góc ACK (cùng phụ vs góc ABC)

=> tam giác ABH = tam giác ACK (g.c.g)

b) tam giác ABH = tam giác ACK (câu a)

=> AK = AH mà AB = AC = AK + BK = AH + CH => BK = CH (1)

do AK = AH => tam giác AKH cân tại A => góc AKH = góc AHK = (1800 - góc BAC) : 2 (*)

ta có: góc ABC = góc ACB = (1800 - góc BAC ) : 2 (**)

từ (*) và (**) => góc ABC = góc AKH (đồng vị ) => BC // KH (2)

từ (1) và (2) => tứ giác BCHK là hình thang đều

t i c k nhé!! 3543645767658587687689698797808657568568