Cho a,n thuộc Z biet a mu n chia het cho 5 cmr a mu 2 +. 150 chia hết cho 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
a) 2A+3=3101-3+3=3101=3n
=>n=101
b) A=3+32+...+3100
A=(3+32)+...+(399+3100)
A=3.(1+3)+...+399.(1+3)
A=3.4+...+399.4
A=(3+...+399).4
=>A chia hết cho 4
A=3+32+...+3100
A=(3+32)+...+(399+3100)
A=3.(3+32)+...+399.(3+32)
A=3.12+...+399.12
A=(3+...+399).12
=>A chia hết cho 12
A=\(A=3+3^2+3^3+.....+3^{100}\\ \Rightarrow3A=3^2+3^3+....+3^{101}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\frac{3^{101}-3}{2}\\ \)
a) \(A=\frac{3^{101}-3}{2}\\ \Rightarrow 2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\\ \Rightarrow n=101\)
b) \(3+3^2+3^3+....+3^{100}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{98}+3^{100}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{98}\left(1+3\right)\\ =3.4+3^3.4+...+3^{98}.4\)
Vậy A chia hết cho 4 ; A cũng chia hết cho 3 vì mỗi số hạng của A đều chia hết cho 3
Mà (3;4)=1 => a chia hết cho 12
tại cậu hay chê người khác kém bây giờ có bài cần hỏi người ta cũng không thèm giúp cậu
an chia hết cho 5 => a chia hết cho 5 nên a = 5k (k \(\in\) N)
Do đó a2 + 150 = (5k)2 + 150 = 25k2 + 25 . 6 = 25 . (k2 + 6) chia hết cho 25
an chia hết cho 5 =>a chia hết cho 5 =>a2 chia hết cho 25 =>a2=25k
=>a2+150=25k+150=25(k+6) chia hết cho 25
=>đpcm