K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2022

\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:

\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)

\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)

Do \(a=1>0;-\dfrac{b}{2a}=m-1\)

TH1: \(m-1\ge1\Rightarrow m\ge2\)

\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)

\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)

TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)

Vậy \(0\le m\le4\)

6 tháng 7 2023

tick cho tớ

MN
30 tháng 8

Để hàm số \(y = (m^2-1)x^3 + (m-1)x^2 - x + 4\) nghịch biến trên khoảng \((-∞;+∞)\), ta cần xác định điều kiện để đạo hàm của hàm số này luôn âm hoặc dương trên khoảng đó. Đạo hàm của hàm số theo x là: \[y' = 3(m^2-1)x^2 + 2(m-1)x - 1\] Để hàm số nghịch biến trên khoảng \((-∞;+∞)\), ta cần giải phương trình \(y' = 0\) và xác định điều kiện để \(y' > 0\) hoặc \(y' < 0\) trên khoảng đó. Giải phương trình \(y' = 0\): \[3(m^2-1)x^2 + 2(m-1)x - 1 = 0\] Điều kiện để hàm số nghịch biến là \(y' > 0\) hoặc \(y' < 0\), ta cần xác định điều kiện của \(m\) sao cho đồng biến hoặc nghịch biến trên khoảng \((-∞;+∞)\). Vậy, số nguyên \(m\) thoả mãn là số nguyên nào?

NV
17 tháng 7 2021

\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)

\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)

\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt

Bài toán thỏa mãn khi: \(x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)

18 tháng 7 2021

giải thích cho em chỗ x1,x2 được không ạ?