K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:\(B=\frac{8n+3}{4n-10}=\frac{8n-20+23}{4n-10}=\frac{2\left(4n-10\right)+23}{4n-10}=2+\frac{23}{4n-10}\)

B LN khi và chỉ khi 4n-10 là số tự nhiên khác 0 nhỏ nhất,mà 4n-10 là số chắn 

Suy ra B LN khi và chỉ khi 4n-10=2 suy ra n=3

Vậy B đạt GTLN là 13,5 khi và chỉ khi n=3

17 tháng 3 2022

nếu gấp thì....

17 tháng 3 2022

tham khảo :(nha anh :)
Câu hỏi của nguyễn ngọc linh - Toán lớp 6 - Học trực tuyến OLM
 

22 tháng 9 2016

Để B đạt GTLN thì 2B đạt GTLN

Ta có:

\(2B=2.\frac{10n-3}{4n-10}=\frac{20n-6}{4n-10}=\frac{20n-50+44}{4n-10}=\frac{5.\left(4n-10\right)+44}{4n-10}\)

                                      \(2B=\frac{5.\left(4n-10\right)}{4n-10}+\frac{44}{4n-10}=5+\frac{44}{4n-10}\)

Để 2B đạt GTLN thì \(\frac{44}{4n-10}\) đạt GTLN

=> 4n - 10 đạt GTNN

+ Với x < 3 thì 4n - 10 < 0, khi đó \(\frac{44}{4n-10}< 0\)

+ Với \(x\ge3\) thì 4n - 10 > 0, khi đó \(\frac{44}{4n-10}\) > 0 

Mà n nhỏ nhất => n = 3 

Như vậy, ta tìm được n = 3 thỏa mãn 2B đạt GTLN

Thay n = 3 vào B ta có:

\(B=\frac{10.3-3}{4.3-10}=\frac{30-3}{12-10}=\frac{27}{2}\)

Vậy với n = 3 thì B đạt GTNN = \(\frac{27}{2}\)

13 tháng 2 2018

cảm ơn bạn !

Bài 3:

a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-1;2;-3\right\}\)

b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{1;0\right\}\)