K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Cách 1 :\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2}-\sqrt{\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\)

\(=|\sqrt{5}-\sqrt{1}|-|\sqrt{5}+\sqrt{1}|=\sqrt{5}-\sqrt{1}-\sqrt{5}-\sqrt{1}=-2\)

Cách 2 \(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(< =>A^2=6-2\sqrt{5}-6-2\sqrt{5}+2\sqrt{36-20}\)

\(< =>A^2=8-2\sqrt{5}-2\sqrt{5}=8-2\left(2\sqrt{5}\right)=8-4\sqrt{5}\)

<=>...

6 tháng 8 2020

\(B=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{2}+\sqrt{1}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\sqrt{17+12\sqrt{2}}-\left(\sqrt{2}+1\right)\sqrt{17-12\sqrt{2}}}{\sqrt{17^2-\left(12\sqrt{2}\right)^2}}\)

tự làm tiếp đi , mình lười viết

26 tháng 6 2017

A= căn (5-2 (căn 5) +1)-căn (5+2 (căn 5) +1)

=căn ((căn 5)-1)^2 -căn ((căn 5)+1)^2

=l (căn 5) -1l  -   l (căn 5) +1l

=căn 5 -1 -căn 5 -1 

=-2

26 tháng 6 2017

A,  biến đổi 6= căn bậc hai của 5 + 1 -> hằng đẳng thức

Tính tiếp sẽ ra

8 tháng 8 2017

\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

    \(=\sqrt{5}-1-\sqrt{5}-1=-2\)

Vậy \(A\in Z\)

Làm tương tự với B.

17 tháng 6 2019

a/ \(A=\frac{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{2-\sqrt{3}}+\frac{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2+\sqrt{3}}\)

\(A=\frac{2+\sqrt{3}+2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\frac{4}{1}=4\)

b/\(A=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(A=\frac{\sqrt{2}-1}{3-2\sqrt{2}}-\frac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(A=\frac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{9-8}\)

\(A=3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}=8\)

c/ \(A=\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}\)

\(A=\frac{5+2\sqrt{15}+3+5-2\sqrt{15}+3}{2}=8\)

d/ theo câu c có \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=8\)

\(\Rightarrow A=8-\frac{\left(\sqrt{5}+1\right)^2}{5-1}=\frac{32-5-2\sqrt{5}-1}{4}=\frac{2\left(13-\sqrt{5}\right)}{4}=\frac{13-\sqrt{5}}{2}\)

10 tháng 7 2019

Câu b đáp án là bằng 2 mới đúng chứ bn!!!

26 tháng 7 2018

*\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}+1=2\)

\(\Rightarrow A\in Z\)

* \(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-2\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\) \(=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\) \(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{\sqrt{2}+1}{3+2\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(\sqrt{2}+1\right)\left(3-2\sqrt{2}\right)}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\) \(=\dfrac{3\sqrt{2}+4-3-2\sqrt{2}-3\sqrt{2}+4-3+2\sqrt{2}}{9-8}\)

\(=2\)

\(\Rightarrow B\in Z\)

26 tháng 7 2018

Cảm ơn bạn nhiều ^^

27 tháng 7 2020

Trả lời:

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(A=\sqrt{1}\)

\(A=1\)

\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(B=1\)

20 tháng 9 2020

a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)

\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )

26 tháng 9 2020

hộ mình câu c ạ :(((