1/3x7+1/7x11+...+1/Xx[X+4]=5/63
tìm X
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3x7}+\frac{1}{7x11}+.....+\frac{1}{Xx\left(Xx4\right)}=\frac{5}{63}\)
Ai nhanh mk tik nha!
Ta có:
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x.\left(x+4\right)}=\frac{5}{63}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{x.\left(x+4\right)}\right)=\frac{5}{63}\)
\(\Rightarrow\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{5}{63}:\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{20}{63}\Leftrightarrow\frac{1}{x+4}=\frac{1}{63}\Leftrightarrow x=63-4=59\)
Rút gọn bằng kiểu nào?
\(P=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(P=\frac{5}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(P=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n+3}\right)\)
\(P=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
...
P=\(\frac{5}{3x7}\) +\(\frac{5}{7x11}\)+\(\frac{5}{11x15}\)+...+\(\frac{5}{\left(4n-1\right)x\left(4n+3\right)}\)
\(\frac{4}{5}\)P=\(\frac{4}{3x7}\)+\(\frac{4}{7x11}\)+\(\frac{4}{11x15}\)+...+\(\frac{4}{\left(4n-1\right)x\left(4n+3\right)}\)
\(\frac{4}{5}\)P=\(\frac{1}{3}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{11}\)+...+\(\frac{1}{4n-1}\)-\(\frac{1}{4n+3}\)
\(\frac{4}{5}\)P=\(\frac{1}{3}\)-\(\frac{1}{4n+3}\)
P=\(\frac{5}{12}\)-\(\frac{5}{16n+12}\)
\(A=\frac{4}{3X7}+\frac{4}{7X11}+\frac{4}{11X15}+...+\frac{4}{100X104}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(=\frac{1}{3}-\frac{1}{104}\)
\(=\frac{101}{312}\)
Chúc bạn học giỏi nha!!!
K cho mik với nhé nguyen huu thuong 2005
\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)
M=1/3.7+1/7.11+1/11.15+...+1/43.47
M=1/3-1/7+1/7-1/11+1/11-1/15+...+1/43-1/47
M=1/3-1/47
CÒN LẠI TỰ TÍNH NHA BN
AI THẤY ĐÚNG THÌ ỦNG HỘ NHA
M=\(\frac{1}{3x7}+\frac{1}{7x11}+\frac{1}{11x15}+...+\frac{1}{43x47}\)
=>4M=\(\frac{4}{3x7}+\frac{4}{7x11}+...+\frac{4}{43x47}\)
=>4M=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{43}-\frac{1}{47}\)
=>4M=\(\frac{1}{3}-\frac{1}{47}\)
=>4M=\(\frac{44}{141}\)
=>M=\(\frac{44}{141}:4\)
=>M=\(\frac{11}{141}\)
Ta có : \(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{x.\left(x+4\right)}=\frac{5}{63}\)
=> \(\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{5}{63}\)
=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{20}{63}\)
=> \(\frac{1}{3}-\frac{1}{x+1}=\frac{20}{63}\)
=> \(\frac{1}{x+1}=\frac{1}{63}\)
=> x + 1 = 63
=> x = 62
Vậy x = 62
Sửa lại bài làm của XYZ một chút:
=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+..+\)\(\frac{1}{x}-\frac{1}{x+4}\)
=> \(\frac{1}{3}-\frac{1}{x+4}\)= \(\frac{5}{63}\div\frac{1}{4}=\frac{20}{63}\)f