rút gọn biểu thức
A= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
\(=\left[\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right].\frac{\left(y+x\right)\left(y-x\right)}{4xy}\)
\(=\frac{1}{x+y}\left(\frac{1}{x+y}-\frac{1}{x-y}\right).\frac{\left(x+y\right)\left(y-x\right)}{4xy}\)
\(=\frac{-2y}{\left(x+y\right)\left(x-y\right)}.\frac{x-y}{-4xy}\)
\(=\frac{1}{\left(x+y\right).2x}\)
Kb với mình nha mn!
ĐKXĐ: x2-y2\(\ne\)0 4xy\(\ne\)0
\(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)\ne0\) <=>x\(\ne\)0 và y \(\ne\)0
\(\Leftrightarrow x\ne y\) và \(x\ne-y\)
Đặt P= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
<=>\(\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right).\frac{y^2-x^2}{4xy}\)
<=>\(\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right).\frac{-\left(x^2-y^2\right)}{4xy}\)
<=>\(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}=\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}\)
<=>\(\frac{1}{2x\left(x+y\right)}=\frac{1}{2x^2+2xy}\)
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
\(\Leftrightarrow A=\frac{4xy}{\left(y^2-x^2\right)\left(y^2+x^2\right)}:\left(\frac{1}{\left(y+x\right)^2}-\frac{x^3+y^3}{\left(x^2-y^2\right)\left(x^2+y^2\right)}\right)\)
Câu a) bạn Despacito làm sai kq r. Kq dúng là A=2x(x+y).
Câu b)
\(3x^2+y^2+2x-2y-1=0\)
\(\Leftrightarrow2x^2+2xy+x^2-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)+1-2=0\)
\(\Leftrightarrow2A+\left(x-y+1\right)^2-2=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Leftrightarrow x-y=-1\)
ĐKXĐ : \(x\ne\pm y\)
Ta có : \(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
=> \(A=\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\left(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\left(\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}\right)\left(\frac{\left(x-y\right)\left(x+y\right)}{-4xy}\right)\)
=> \(A=\frac{1}{2x\left(x+y\right)}\)
ĐKXĐ : \(x\ne\mp y\) ; \(x,y\ne0\)
Ta có :
\(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2+y^2}\right):\frac{4xy}{y^2-x^2}\)
\(=\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x-y\right)\left(x+y\right)}\right):\frac{4xy}{\left(y-x\right)\left(x+y\right)}\)
\(=\left(\frac{x-y}{\left(x-y\right)\left(x+y\right)^2}-\frac{x+y}{\left(x-y\right)\left(x+y\right)^2}\right).\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)
\(=\frac{x-y-x-y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)
\(=\frac{-2y}{\left(x-y\right)\left(x+y\right)^2}.\frac{\left(y-x\right)\left(x+y\right)}{4xy}\)
\(=\frac{1}{2x\left(x+y\right)}\)
Vậy..