Cho đa thức f(x)=x3+ax2−bx+2. 1. Cho a=− 1/ 2 và b=4. Chứng minh rằng x=1/ 2 là nghiệm của đa thức. 2. Biết đa thức đã cho nhận x=1 và x=−2 là nghiệm. Tìm giá trị của a và b. 3. Với đa thức tìm được ở câu trên, hãy tìm giá trị của x thỏa mãn f(x)=x+2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`f(x) = (x-1)(x+2) = 0`.
`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.
`<=> a + b = -3`.
Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.
`<=> 4a - 2b = 6`.
`<=> 2a - b = 6`.
`=> ( a + b) + (2a - b) = -3 + 6`.
`=> 3a = 3`.
`=> a = 1.`
`=> b = -4`.
Vậy `(a,b) = {(1, -4)}`.
cho : f (x) = 0
=> (x−1)(x+2)=0
=>x−1=0 và x+2=0
=>x=1vàx=-2
Vậy x = 1 và x = −2 là nghiệm của đa thức f (x)
Do nghiệm của f (x) cũng là nghiệm của g (x) nên x = 1 và x = −2 là nghiệm của g (x)
Ta có: g(1)=13+a⋅12+b⋅1+2=0
⇒1+a+b+2=0
⇒3+a+b=0
⇒b=−3−a (1)
Ta có: g(−2)=(−2)3+a⋅(−2)2+b⋅(−2)+2=0
⇒−8+4a−2b+2=0
⇒2⋅(−4)+2a+2a−2b+2=0
⇒2⋅(−4+a+a−b+1)=0
⇒(−3+2a−b)=0
=> 2a − b = 3 (2)
thay (1) vao (2) ta dc
2a−(−3−a)=3
⇒a=0
Do b=−3-a
=>b=3
Vậy a = 0 ; b = 3
f(x) = 0 => ( x - 1).( x + 2) = 0
=> th1: x - 1= 0 =>x = 1
th2: x + 2 = 0 => x = -2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên x = 1 và x = -2 là nghiệm của g(x)
* thay x = 1 vào g(x) = 0
=> 1 + a + b + 2 = 0 => a+ b = -3 (1)
* thay x = -2 vào g(x) = 0
=> -8 + 4a - 2b + 2 = 0
=> 4a - 2b = 6
=> 2a -b = 3 (2)
Từ (1) và (2) => a + b = -3
2a - b = 3
=> 3a =0
b = -3 -a
=> a = 0
b = -3
------------ Chúc cậu học tốt------
Tick cko tớ nhé ~
Ta có f(x)=0 <=> \(\left(x-1\right)\left(x+2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên 1 và -2 là nghiệm của đa thức g(x)
+Thay x=1, ta có: \(g\left(1\right)=1^3+a.1^2+b.1+2=0\Leftrightarrow1+a+b+2=0\Leftrightarrow a+b=-3\left(1\right)\)
+Thay x=-2, ta có:
\(g\left(-2\right)=\left(-2\right)^3+a.2^2+b.\left(-2\right)+2=0\Leftrightarrow-8+4a-2b+2=0\Leftrightarrow4a-2b=6\left(2\right)\)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\)
Giải hệ pt, ta được: a=0, b=-3.
Ta có : f(x) = 0
⇔ ( x-1)(x+2) = 0
⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vì nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x) nên x =1 hoặc x = -2 là nghiệm của g(x)
Thay x = 1 vào g(x) = 0
⇔ 13 + a.12 + b.1 + 2 = 0
⇔ 1 + a + b + 2 = 0
⇔ a + b = -3 (1)
Thay x = -2 vào g(x) = 0
⇔ (-2)3 + a.(-2)2 + b.(-2) + 2 = 0
⇔ -8 + a.4 - 2.b + 2 = 0
⇔ 4a - 2b = 6
⇔ 2.(2a - b ) = 6
⇔ 2a - b = 3 (2)
Từ (1) và (2) ⇒ \(\left\{{}\begin{matrix}a+b=-3\\2a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=0\\b=-3-a\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
a) Thay \(x=\frac{1}{2}\) vào đa thức với \(a=-\frac{1}{2};b=4\) ta có :
\(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^3+\left(-\frac{1}{2}\right)\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+2=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của đa thức.
b) Theo bài ta có :
\(\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1+a-b+2=0\\\left(-2\right)^3+a.\left(-2\right)^2-\left(-2\right).b+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=-3\\4a+2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2b=-6\\4a+2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=3\end{matrix}\right.\)
c) Theo câu b) ta có : \(f\left(x\right)=x^3-3x+2\)
Để \(f\left(x\right)=x+2\Leftrightarrow x^3-3x+2=x+2\)
\(\Leftrightarrow x^3-4x=0\)
\(\Leftrightarrow x.\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm2\end{matrix}\right.\)