Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH. Biết AH = 12 cm, BC = 25 cm. Tính BH, HC, AB, AC (Vẽ hình mẫu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)
a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm
b, Tìm được A M H ^ ≈ 73 , 74 0
c, S A H M = 21 c m 2
a, Xét \(\Delta CHA.và.\Delta CAB\), ta có:
\(\widehat{CHA}=\widehat{CAB}=90^o\)
\(\widehat{C.}chung\)
\(\Rightarrow\Delta CHA\sim\Delta CAB\) ( g.g )
b, \(Vì.\Delta CHA\sim\Delta CAB\)
\(\Rightarrow\dfrac{CH}{CA}=\dfrac{CA}{CB}\\ \Rightarrow AC^2=CB.CH\left(đpcm\right)\)
c. Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow BC^2=9^2+12^2=225\\ \Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
\(Vì.\Delta CHA\sim\Delta CAB\)
\(\Rightarrow\dfrac{HA}{AB}=\dfrac{CA}{CB}\)
\(\Rightarrow AH=\dfrac{CA.AB}{CB}=\dfrac{12.9}{15}=7,2\left(cm\right)\)
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15