K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

Sử dụng hệ thức lượng trong tam giác vuông thôi: 
AB*AC = AH*BC = 12*25 = 300 
AB^2 + AC^2 = BC^2 = 25^2 = 625 
giải hệ trên ta được : AB = 15, AC = 20 
AB^2 = BH*BC=> BH = AB^2/BC = 9 
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16 
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15 

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

12 tháng 9 2019
AH^2= BH. HC AH^2=9.25 Suy ra AH=15(cm) Còn AB vs AC dùng Pytago

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2

6 tháng 4 2022

a, Xét \(\Delta CHA.và.\Delta CAB\), ta có:

\(\widehat{CHA}=\widehat{CAB}=90^o\)

\(\widehat{C.}chung\)

\(\Rightarrow\Delta CHA\sim\Delta CAB\) ( g.g )

b, \(Vì.\Delta CHA\sim\Delta CAB\)

\(\Rightarrow\dfrac{CH}{CA}=\dfrac{CA}{CB}\\ \Rightarrow AC^2=CB.CH\left(đpcm\right)\)

c. Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC^2=9^2+12^2=225\\ \Rightarrow BC=\sqrt{225}=15\left(cm\right)\)

\(Vì.\Delta CHA\sim\Delta CAB\)

 \(\Rightarrow\dfrac{HA}{AB}=\dfrac{CA}{CB}\)

\(\Rightarrow AH=\dfrac{CA.AB}{CB}=\dfrac{12.9}{15}=7,2\left(cm\right)\)

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.a)     Tìm độ dài của BH; CH; AB và AC.b) Vẽ trung tuyến AM. Tính AMc)     Tìm diện tích của rAHM.Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.Bài 4: BP 2017-2018Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH =...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.

a)     Tìm độ dài của BH; CH; AB và AC.

b) Vẽ trung tuyến AM. Tính AM

c)     Tìm diện tích của rAHM.

Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.

Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.

Bài 4: BP 2017-2018

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.

a)       Tính độ dài đường cao AH và ABC của tam giác ABC.

b)       Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác

Bài 5.   Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC

Bài 6. (1.0 điểm)

      Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.

 

 

1
24 tháng 7 2021

câu c bài 1 là tích diện tích của tam giác AHM nhá'