Tìm x biết:
a) x^2-7x(x-4)=16
b) (x+5)^2-3(x+1)=22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
Bài 1 :
a) 72x-1 = 343
=> 72x-1 = 73
=> 2x - 1 = 3 => 2x = 4 => x = 2
b) (7x - 11)3 = 25.32 + 200
=> (7x - 11)3 = 32.9 + 200
=> (7x - 11)3 = 488
xem kĩ lại đề này :vvv
c) 174 - (2x - 1)2 = 53
=> (2x - 1)2 = 174 - 53
=> (2x - 1)2 = 174 - 125 = 49
=> (2x - 1)2 = (\(\pm\)7)2
=> \(\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Mà x \(\in\)N nên x = 4( thỏa mãn điều kiện)
Bài 2 :
a) x5 = 32 => x5 = 25 => x = 2
b) (x + 2)3 = 27
=> (x + 2)3 = 33
=> x + 2 = 3 => x = 3 - 2 = 1
c) (x - 1)4 = 16
=> (x - 1)4 = 24
=> x - 1 = 2 => x = 3 ( vì đề bài cho x thuộc N nên thỏa mãn)
d) (x - 1)8 = (x - 1)6
=> (x - 1)8 - (x - 1)6 = 0
=> (x - 1)6 [(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^6=0\\\left(x-1\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=\left(\pm1\right)^2\end{cases}}\)
+) x - 1 = 1 => x = 2 ( tm)
+) x - 1 = -1 => x = 0 ( tm)
Vậy x = 1,x = 2,x = 0
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
a: \(\Leftrightarrow x^2-7x^2+28x=16\)
\(\Leftrightarrow-6x^2+28x-16=0\)
\(\Leftrightarrow3x^2-14x+8=0\)
\(\text{Δ}=\left(-14\right)^2-4\cdot3\cdot8=100\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-10}{6}=\dfrac{4}{6}=\dfrac{2}{3}\\x_2=\dfrac{14+10}{6}=\dfrac{24}{6}=4\end{matrix}\right.\)
bạn ơi, xin lỗi nhưng mình chỉ mới học lớp 8 nên chưa thể giải theo cách này ạ, cảm ơn bạn nhiều ạ