K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

Đặt a2 = x; b2 = y; c2 = z

Khi đó, ta có: (x + y)(y + z)(z + x) \(\ge\)xyz

<=> (xy + xz + y2 + yz)(z + x) - 8xyz \(\ge\)0

<=> xyz + xz2 + y2z + yz2 + x2y + x2z + y2x + xyz - 8xyz \(\ge\)0

<=> (xz2 +xy2) + (y2z + zx2) + (yz2 + yx2) - 6xyz \(\ge\)0

<=> (xz2 - 2xyz + xy2) + (y2z + zx- 2xyz) + (yz+ yx2 - 2xyz) \(\ge\)0

<=> x(z2 - 2yz + y2) + z(y2 + x2 - 2xy) + y(z2 + x2 - 2xz) \(\ge\) 0

<=> x(z - y)2 + z(y - x)2 + y(z - x)2 \(\ge\)0

hay a2(c2 - b2)2 + c2(b2 - a2)2 + b2(c2 - a2)2 \(\ge\)0 (luôn đúng với mọi a;b;c)

=> Đpcm

30 tháng 7 2020

Đặt \(a^2;b^2;c^2\rightarrow x;y;z\left(x;y;z\ge0\right)\)

Khi đó bài toán trở thành \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(< =>\left(x+y\right)\left(y+z\right)\left(z+x\right)-8xyz\ge0\)

\(< =>a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)hay \(a^2=b^2=c^2\)

16 tháng 2 2018

Bao nhiêu công gõ bài xong rồi đi chơi, chơi về định gửi bài, chơi về bật máy lên gửi thì lỗi, may vãi

16 tháng 2 2018

Ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{2a\left(a+b+c\right)+2a^2+bc}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

\(=\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

Cần chứng minh \(\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)

\(\Leftrightarrow\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\ge1\)

Cauchy-Schwarz: \(VT=\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\)

\(=\dfrac{b^2c^2}{b^2c^2+2a^2bc}+\dfrac{c^2a^2}{c^2a^2+2ab^2c}+\dfrac{a^2b^2}{a^2b^2+2abc^2}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) * Đúng*

Happy New Year (Lunar)

9 tháng 4 2017

Lời giải

\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)

\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)

\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)

\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)

\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm

Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem

6 tháng 4 2017

Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé

bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2

Ta sẽ giả sử

\(a^2+\dfrac{1}{a^2}\ge2\)(2)

\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)

BĐT (2) đúng suy ra BĐT (1) đúng

Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)

CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)

\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)

Nhân vế theo vế của (*) , (**) , (***) ta được

\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 1

6 tháng 4 2017

Dễ thấy: \(a^2;b^2;c^2\ge0\forall a;b;c\) mà \(a;b;c\ne0\) nên chỉ có \(a,b,c>0\)

Áp dụng BĐT AM-GM ta có: 

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2\cdot\frac{1}{a^2}}=2\sqrt{1}=2\)

\(b^2+\frac{1}{b^2}\ge2\sqrt{b^2\cdot\frac{1}{b^2}}=2\sqrt{1}=2\)

\(c^2+\frac{1}{c^2}\ge2\sqrt{c^2\cdot\frac{1}{c^2}}=2\sqrt{1}=2\)

Nhân theo vế 3 BĐT trên ta có: 

\(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge2\cdot2\cdot2=8\)

Đẳng thức xảy ra khi \(a=b=c\)

16 tháng 4 2017

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

16 tháng 4 2017

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)

15 tháng 5 2018

Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp

1 tháng 8 2020

Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)

\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)

\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)

Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Ta thực hiện phép đổi biến thì:

\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)

Đến đây là phần của bạn

\(1,VT=2\left(a^3+b^3+c^3\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Ta có \(a^3+b^3\ge ab\left(a+b\right)\)

              \(b^3+c^3\ge bc\left(b+c\right)\)

            \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng từng vế các bđt trên  ta được

\(VT\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Bây giờ ta cm:

\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Bất đẳng thức trên luôn đúng

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c

2 tháng 4 2020

Mấy bài này dễ mà, tách ra rồi Cauchy là xong hết =))