Phân tích đa thức thành nhân tử
x-5√x+6
x-9+y-2√xy
x-2√x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)
\(=x^2\left(x+y\right)-\left(x+y\right)=\left(x^2-1\right)\left(x+y\right)=\left(x-1\right)\left(x+1\right)\left(x+y\right)\)
\(x^2\left(x-3\right)-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
=x²(x-3)-4x+3.4
=x²(x-3)-4(x+3)
=x²(x-3)+4(x-3)
=(x-3)(x²+4)
=(x-3)(x²+2²)
=(x-3)(x-2)(x+2)
\(=x^2-6x+9-2=\left(x-3\right)^2-2=\left(x-3-\sqrt{2}\right)\left(x-3+\sqrt{2}\right)\)
\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)
\(=x^2\left(x-y\right)-2y\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-2y\right)\)
Bài 2:
Sửa đề: \(x^3-3x^2-10x=0\)
\(\Leftrightarrow x\left(x^2-3x-10\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-2\end{matrix}\right.\)
Trả lời:
\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)
\(x-9+y-2\sqrt{xy}=\left(x-2\sqrt{xy}+y\right)-9\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}-3\right).\left(\sqrt{x}-\sqrt{y}+3\right)\)
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}+1\right)\)
Học tốt