K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)

=> x + 1 = 2013 => x = 2012

26 tháng 7 2020

Trả lời:

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Leftrightarrow x+1=2013\)

\(\Leftrightarrow x=2012\)

Vậy \(x=2012\)

21 tháng 1 2020

Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(=1-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Rightarrow\)x+1=4026

x=4026-1

x=4025

Vậy x=4025.

21 tháng 1 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(1-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{x+1}=\frac{2015}{4026}\Rightarrow x+1=\frac{4026}{2015}\Rightarrow x=\frac{2011}{2015}\)

25 tháng 1 2017

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

Vậy x = 2012

16 tháng 8 2018

a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)

\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)

\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)

b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)

\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)

\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)

\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)

\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)

c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)

\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)

\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)

\(\Rightarrow x=9\)

DD
10 tháng 1 2021

b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)

\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{15}\)

23 tháng 8 2019

tra loi nhanh ho mk voi

23 tháng 8 2019

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

    = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

      = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

      = \(1-\frac{1}{7}\)

      =   \(\frac{7}{7}-\frac{1}{7}\)

        = \(\frac{6}{7}\)

2) \(\frac{7}{4}-x.\frac{4}{3}=\frac{5}{19}\)

              \(x.\frac{4}{3}=\frac{7}{4}-\frac{5}{19}\)

         \(x.\frac{4}{3}=\frac{133}{76}-\frac{20}{76}\)

\(x.\frac{4}{3}=\frac{113}{76}\)

      \(x=\frac{113}{76}:\frac{4}{3}\)

      \(x=\frac{399}{304}\)

VẬY \(x=\frac{399}{304}\)

b) \(\left(x+\frac{3}{4}\right).\frac{5}{7}=\frac{10}{9}\)

      \(\left(x+\frac{3}{4}\right)=\frac{10}{9}:\frac{5}{7}\)

     \(x+\frac{3}{4}=\frac{14}{9}\)

              \(x=\frac{14}{9}-\frac{3}{4}\)

               \(x=\frac{29}{36}\)

Vậy \(x=\frac{29}{36}\)

c) \(x.\frac{1}{2}+\frac{3}{2}.x=\frac{4}{5}\)

\(x.\left(\frac{1}{2}+\frac{3}{2}\right)=\frac{4}{5}\)

\(x.2=\frac{4}{5}\)

     \(x=\frac{4}{5}:2\)

      \(x=\frac{2}{5}\)

Vậy \(x=\frac{2}{5}\)

Chúc bạn học tốt !!!