từ các số 1,5,6,7 có thể lập đc bao nhiêu số tự nhiên:
A) có 4 chữ số ( ko nhất thiết phải khác nhau)
B) có 4 cữ số khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số có 4 chữ số thỏa yêu cầu có dạng
\(\overline{abcd}\)
a có 4 cách chọn, b có 4 cách chọn, c có 4 cách chọn, d có 4 cách chọn.
Vậy theo quy tắc nhân có 4.4.4.4 = 256 cách chọn.
b) Số thoả yêu cầu có dạng
\(\overline{abcd}\)
a có 4 cách chọn, b có 3 cách chọn, c có 2 cách chọn, d có 1 cách chọn
Vậy theo quy tắc nhân có 4.3.2.1 = 24 cách chọn.
bạn Linh Nhi Nguyễn Đặng làm đúng rồi
@_@
bạn này học giỏi lắm
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
gọi số đó là \(\overline{abcd}\) ở đó a,b,c,d thuộc {1,2,5,7}
a, để số đó lớn hơn 4000 thì chữ số a phải bắt đầu bằng chữ số 5 hoặc 7.
vậy chữ số a có 2 cách chọn, chữ số b có 4 cách chọn
chữ số c có 4 cách chọn, d cũng có 4 cách chọn
suy ra có tất cả các chữ số ớn hơn 4000 là 2.4.4.4=128 số
b, để số đó lớn hơn 4000 thì chữ số a phải bắt đầu bằng 5 hoặc 7
mà các chữ số khác nhau
suy ra b có 3 cách chọn, c có 2 cách chọn và d có 1 cách chọn
số các chữ số cần tìm là: 2.3.2.1=12 số
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 1 , 5 , 6 , 7 .
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.
Chọn đáp án B.
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 1 , 5 , 6 , 7 .
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
· a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
· b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
· c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
· d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.
Chọn đáp án B.
a. Số số lập được: \(5.5=25\) số
b. \(5.5.4=100\) số
c. Gọi số đó là abcd
TH1: d=0 \(\Rightarrow abc\) có \(A_5^3=60\) cách
TH2: \(d\ne0\Rightarrow d\) có 2 cách, abc có \(4.4.3=48\)
Tổng cộng: \(60+2.48=156\) số
d. Gọi số đó là abcde
e có 3 cách chọn
abcd có \(4.4.3.2=96\) cách
Tổng cộng: \(3.96=288\) số
a:
TH1: Trong 4 số có số 0
=>Số cách là: \(C^3_9\cdot3\cdot3\cdot2\cdot1=1512\left(cách\right)\)
TH2: ko có số 0
=>Số cách là: \(A^4_9=3024\left(cách\right)\)
=>Có 1512+3024=4536 cách
b: TH1: Có số 0
=>Có \(C^3_7\cdot5\cdot5\cdot4\cdot3\cdot2\cdot1=21000\left(cách\right)\)
TH2: ko có số 0
=>Có \(C^4_7\cdot6!=25200\left(cách\right)\)
=>Có 46200 cách
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn