K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

ta có a(1-b) \(\ge\)a2(1-b); b(1-c) \(\ge\)b2(1-c); c(1-a) \(\ge\)c2(1-a)

suy ra (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)a(1-b)+b(1-c)+c(1-a)

=> (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)(a+b+c)-(ab+bc+ca)

mà (1-a)(1-b)(1-c) +abc\(\ge\)0 => 1\(\ge\)(a+b+c)-(ab+bc+ca)

vậy a2+b2+c2 \(\le\)1+a2b+b2c+c2a

dấu đẳng thức xảy ra <=> trong 3 số có 1 số bằng 0 và 1 số bằng 1

3 tháng 8 2020

Ta có: \(a.\left(1-b\right)\ge a^2.\left(1-b\right)\)

          \(b.\left(1-c\right)\ge b^2.\left(1-c\right)\)

          \(c.\left(1-a\right)\ge c^2.\left(1-a\right)\)

Suy ra \(\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le a.\left(1-b\right)+b.\left(1-c\right)+c.\left(1-a\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Mà \(\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc\ge0\) \(\Rightarrow1\ge\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Vậy \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)

Dấu dẳng thức xảy ra \(\Leftrightarrow\)trong ba số đó có một số bằng 0, một số bằng 1 

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:
Vì $a,b,c\in [0;1]$ nên: \(a(a-1)(b-1)\geq 0\)

\(\Leftrightarrow a(ab-a-b+1)\geq 0\)

\(\Leftrightarrow a^2b\geq a^2+ab-a\)

Tương tự với \(b^2c; c^2a\) suy ra:

\(a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(1)\)

Lại có:

\((a-1)(b-1)(c-1)\leq 0\)

\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)

\(\Leftrightarrow abc-(ab+bc+ac)+a+b+c-1\leq 0\)

\(\Leftrightarrow ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(2)\) do $abc\geq 0$

Từ \((1);(2)\Rightarrow a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2\) (đpcm)

5 tháng 7 2019

\(0\le a,b,c\le1\)\(\Rightarrow\)\(\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2-a\le0\\b^2-b\le0\\c^2-c\le0\end{cases}}}\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a^2-a\right)\left(b-1\right)\ge0\\\left(b^2-b\right)\left(c-1\right)\ge0\\\left(c^2-c\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2+ab-a\\b^2c\ge b^2+bc-b\\c^2a\ge c^2+ca-c\end{cases}}}\)

\(\Rightarrow\)\(a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)-\left(a+b+c\right)\) (1) 

Và \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\\\left(c-1\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}ab\ge a+b-1\\bc\ge b+c-1\\ca\ge c+a-1\end{cases}}}\)

\(\Rightarrow\)\(ab+bc+ca\ge2\left(a+b+c\right)-3\) (2) 

(1), (2) \(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\)

Lại có: \(\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\Leftrightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\\c^3\le c^2\end{cases}}}\)

\(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\ge2\left(a^3+b^3+c^3\right)=2a^3+2b^3+2c^3\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=1;b=1;c=0\) và các hoán vị 

12 tháng 6 2020

Phùng Minh Quân ơi câu trả lời của bạn dài quá. Bạn có thể trả lời ngắn hơn mà.

28 tháng 11 2019

Do a ≤ 1⇒a2 ≤1

(1−a2)(1−b) ≤0 ⇒1+a2b2 ≥ a2+b

0 ≤ a , b ≤ 1 ⇒a2≥ a3 ,b2≥ b3

⇒ 1+a2b2 ≥ a3 + b3

Tương tự rồi cộng lại ta có được điều phải chứng minh

8 tháng 10 2020

Ta có \(a\left(1-a\right)\left(1-b\right)\ge0\)

\(\Leftrightarrow a^2b\ge a^2+ab-a\)

Tương tự \(b^2c\ge b^2+bc-b;c^2a\ge c^2+ca-a\)

\(\Rightarrow a^2b+b^2c+c^2a+1\ge a^2+b^2+c^2+ab+bc+ca-a-b-c+1\)\(=a^2+b^2+c^2+\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc\ge a^2+b^2+c^2\)

Hay \(a^2+b^2+c^2\le a^2b+b^2c+c^2a+1\)

1 tháng 3 2021

`a,b,c\in [0;1]`

`=>a(a-1)(b-1)\ge 0`

`<=> a(ab-a-b+1)\ge 0`

`<=> a^2b\ge a^2+ab-a`

Hoàn toàn tương tự:

`=>a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(***)`

Lại có:

`(a-1)(b-1)(c-1)\le 0`

`<=> (ab-a-b+1)(c-1)\le 0`

`<=abc-(ab+bc+ac)+a+b+c-1\le 0`

`<=> ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(******)`

`(***),(******)=> a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2`

bạn tham khảo :https://hoc24.vn/hoi-dap/question/825780.html

4 tháng 12 2018

\(A=\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\)

\(\Leftrightarrow2A=\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ac}+\dfrac{2c^2}{2c^2+ab}\)

\(=1-\dfrac{bc}{2a^2+bc}+1-\dfrac{ac}{2b^2+ac}+1-\dfrac{ab}{2c^2+ab}\)

\(=3-\dfrac{bc}{2a^2+bc}-\dfrac{ac}{2b^2+ac}-\dfrac{ab}{2c^2+ab}\)

CM: \(P=\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)

Thật vậy:

\(P\ge\dfrac{\left(ab+bc+ac\right)^2}{2a^2bc+b^2c^2+2b^2ac+a^2c^2+2c^2ab+a^2b^2}\)

\(=\dfrac{\left(ab+bc+ac\right)^2}{a^2bc+a^2bc+b^2c^2+b^2ac+b^2ac+a^2c^2+c^2ab+c^2ab+a^2b^2}\)

\(=\dfrac{\left(ab+bc+ac\right)^2}{ab\left(ac+bc+ab\right)+bc\left(ab+bc+ac\right)+ac\left(ab+bc+ac\right)}\)

\(=1\)

\(2A=3-P\le3-1=2\)

\(2A\le2\Leftrightarrow A\le1\)

\("="\Leftrightarrow a=b=c\)