Cho x, y, z dương. Cmr:
\(P=\frac{x}{\sqrt{x^2+8yz}}+\frac{y}{\sqrt{y^2+8zx}}+\frac{z}{\sqrt{z^2+xy}}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này thuộc loại nổi tiếng lắm
\(VT.\left(x\sqrt{x^2+8yz}+y\sqrt{y^2+8zx}+z\sqrt{z^2+8xy}\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{x\sqrt{x^2+8yz}+y\sqrt{y^2+8zx}+z\sqrt{z^2+8xy}}\)
Ta lại có:
\(\sqrt{x}\sqrt{x^3+8xyz}+\sqrt{y}\sqrt{y^3+8zx}+\sqrt{z}\sqrt{z^3+8xyz}\le\sqrt{\left(x+y+z\right)\left(x^3+y^3+z^3+24xyz\right)}\)
Mà \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge x^3+y^3+z^3+24xyz\)
\(\Rightarrow x\sqrt{x^2+8yz}+y\sqrt{y^2+8zx}+z\sqrt{z^2+8xy}\le\left(x+y+z\right)^2\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
IMO 2001!Vô số cách giải! Ở đây mình đưa ra $5$ cách khác.
$$\frac{x}{\sqrt{x^2+8yz}}+\frac{y}{\sqrt{y^2+8zx}} +\frac{z}{\sqrt{z^2+8xy}} \geqq 1$$
Theo AM-GM$:$ \(\begin{align*} \text{LHS} &=\sum\limits_{cyc} \frac{x}{\sqrt{x^2+8yz}} =\sum\limits_{cyc} \frac{x(x+y+z)}{\sqrt{(x^2+8yz)(x+y+z)^2}}\\&\geqq 2\sum\limits_{cyc} \frac{x(x+y+z)}{(x^2+8yz)+(x+y+z)^2} \geqq 1 \end{align*}\)
Bất đẳng thức cuối tương đương với $$\frac{1}{2} \sum\limits_{cyc} \left( 8\,{x}^{3}y+31\,{x}^{2}{y}^{2}+8\,x{y}^{3}+202\,x{y}^{2}z+262
\,xy{z}^{2}+202\,x{z}^{3}+79\,{z}^{4} \right) \left( x-y \right) ^{2}
\geqq 0$$
Xong!
Cách 2: Dùng bổ đề do NguyenHuyen_AG đề xuất$:$
$${\frac {a}{\sqrt {a^{2} + 8bc}}}\geqq {\frac {a(5a + 2b + 2c)}{5\left(a^2 + b^2 + c^2\right) + 4(bc + ca + ab)}}.$$
Việc chứng minh bổ đề này tương đối đơn giản$,$ bạn có thể tự làm.
Cách 3: Chứng minh theo trình tự$:$ $$\sum_{cyc}\frac{x}{\sqrt{x^2+8xy}}\geq\sum_{cyc}\frac{x^{\frac{4}{3}}}{x^{\frac{4}{3}}+y^{\frac{4}{3}}+z^{\frac{4}{3}}}=1$$
Cách 4: Dùng Holder (cách này khá quen thuộc)
Cách 5$:$ Dùng phương pháp phản chứng.
Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ
\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)
Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)
Thật vậy,BĐT tương đương với:
\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)
\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)
\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )
=> đpcm
Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B
Ta có:
\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)
=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)
=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
Tương tự
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)
\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)
\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)
\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)
Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z
=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)
=> \(x+y+z\ge3\)với mọi x, y, z dương
Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)
Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)
Đặt: x + y + z = t ( t\(\ge3\))
Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)
Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)
Từ (1); (2)
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)
Dấu "=" xảy ra <=> x= y = z = 1
Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)
Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)
\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)
=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)
=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)
\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)
\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)
\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)
Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z
=> \(4P\le4.\sqrt{9}=12\)
=> \(P\le3\)
Dấu "=" xảy ra <=> x = y = z = 1
Vậy max P = 3 đạt tại x = y = z = 1.
\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)
Áp dụng BDT Cô-si với 2 số không âm:
\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)
Vậy.......
Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)
\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)
\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\
\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )
\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)
\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)