Cho PT bậc hai ax2+bx+c=0 (a ≠ 0) với a,b,c ∈ Q và cho biết PT có 1 nghiệm là \(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\). Tính nghiệm còn lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)
\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)
Thay \(x=2-\sqrt{3}\) vào Pt, ta được:
\(\left(2-\sqrt{3}\right)^2-3\left(2-\sqrt{3}\right)+k-1=0\)
\(\Leftrightarrow7-4\sqrt{3}-6+3\sqrt{3}+k-1=0\)
\(\Leftrightarrow k-\sqrt{3}=0\)
hay \(k=\sqrt{3}\)
\(x_1+x_2=3\)
nên \(x_2=3-2+\sqrt{3}=\sqrt{3}+1\)
Giả sử \(x_1=\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-5+2\sqrt{6}\)
Do \(x_1\) là nghiệm của pt nên:
\(a\left(-5+2\sqrt{6}\right)^2+b\left(-5+2\sqrt{6}\right)+c=0\)
\(\Leftrightarrow49a-20a\sqrt{6}-5b+2b\sqrt{6}+c=0\)
\(\Leftrightarrow49a-5b+c=\left(20a-2b\right)\sqrt{6}\)
Do vế trái là đại lượng hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}49a-5b+c=0\\20a-2b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=10a\\49a-50a+c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=a\\b=10a\end{matrix}\right.\) thay vào pt ban đầu:
\(ax^2+10ax+a=0\Leftrightarrow x^2+10x+1=0\)
\(\Rightarrow x_2=\frac{1}{x_1}=-5-2\sqrt{6}\)